Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends

Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices.

[1]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[2]  H. Alshareef,et al.  All‐Polymer Bistable Resistive Memory Device Based on Nanoscale Phase‐Separated PCBM‐Ferroelectric Blends , 2013 .

[3]  Sang-Hyun Hong,et al.  Novel Digital Nonvolatile Memory Devices Based on Semiconducting Polymer Thin Films , 2007 .

[4]  Wei Huang,et al.  Preparation of MoS₂-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. , 2012, Small.

[5]  Jae Hun Jung,et al.  Electrical bistabilities and carrier transport mechanisms of write-once-read-many-times memory devices fabricated utilizing ZnO nanoparticles embedded in a polystyrene layer , 2009 .

[6]  Yang Yang,et al.  Polyaniline nanofiber/gold nanoparticle nonvolatile memory. , 2005, Nano letters.

[7]  Tae-Wook Kim,et al.  Stable Switching Characteristics of Organic Nonvolatile Memory on a Bent Flexible Substrate , 2010, Advanced materials.

[8]  P. Sonar,et al.  High mobility organic thin film transistor and efficient photovoltaic devices using versatile donor–acceptor polymer semiconductor by molecular design , 2011 .

[9]  Jung-Hyun Lee,et al.  Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. , 2009, Nano letters.

[10]  Su‐Ting Han,et al.  Towards the Development of Flexible Non‐Volatile Memories , 2013, Advanced materials.

[11]  Qiang Zhang,et al.  Nonvolatile memory devices based on electrical conductance tuning in poly(N-vinylcarbazole)-graphene composites , 2012 .

[12]  En-Tang Kang,et al.  Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films. , 2009, ACS nano.

[13]  Wen‐Chang Chen,et al.  New Two-Dimensional Thiophene−Acceptor Conjugated Copolymers for Field Effect Transistor and Photovoltaic Cell Applications , 2010 .

[14]  S. Du,et al.  A triphenylamine-containing donor-acceptor molecule for stable, reversible, ultrahigh density data storage. , 2007, Journal of the American Chemical Society.

[15]  Karen I. Winey,et al.  Resistive Switching in Bulk Silver Nanowire–Polystyrene Composites , 2011 .

[16]  Heung Cho Ko,et al.  Organic nonvolatile memory devices with charge trapping multilayer graphene film , 2012, Nanotechnology.

[17]  Gang Liu,et al.  Conjugated‐Polymer‐Functionalized Graphene Oxide: Synthesis and Nonvolatile Rewritable Memory Effect , 2010, Advanced materials.

[18]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[19]  Cheng-Liang Liu,et al.  Supramolecular block copolymers: graphene oxide composites for memory device applications. , 2012, Chemical communications.

[20]  Sang-Hyun Hong,et al.  High‐Performance Programmable Memory Devices Based on Hyperbranched Copper Phthalocyanine Polymer Thin Films , 2008 .

[21]  S. Möller,et al.  A polymer/semiconductor write-once read-many-times memory , 2003, Nature.

[22]  Feng Wang,et al.  An upconverted photonic nonvolatile memory , 2014, Nature Communications.

[23]  Jae Ho Shim,et al.  Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer. , 2010, Nano letters.

[24]  Tae Whan Kim,et al.  Memory effects and carrier transport mechanisms of write-once- read-many-times memory devices fabricated using poly(3-hexylthiophene) molecules embedded in a polymethylmethacrylate layer on a flexible substrate , 2011 .

[25]  Yongmin Ko,et al.  Electrically bistable properties of layer-by-layer assembled multilayers based on protein nanoparticles. , 2011, ACS nano.

[26]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[27]  Ting‐Chang Chang,et al.  Transferable and Flexible Label‐Like Macromolecular Memory on Arbitrary Substrates with High Performance and a Facile Methodology , 2013, Advanced materials.

[28]  D. Kwong,et al.  A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. , 2006, Angewandte Chemie.

[29]  Gunuk Wang,et al.  Redox‐Induced Asymmetric Electrical Characteristics of Ferrocene‐Alkanethiolate Molecular Devices on Rigid and Flexible Substrates , 2014 .

[30]  Z. Yin,et al.  Fabrication of Flexible, All‐Reduced Graphene Oxide Non‐Volatile Memory Devices , 2013, Advanced materials.

[31]  Jinhan Cho,et al.  Control over Memory Performance of Layer-by-Layer Assembled Metal Phthalocyanine Multilayers via Molecular-Level Manipulation , 2012 .

[32]  Tadanori Kurosawa,et al.  Flexible polymer memory devices derived from triphenylamine–pyrene containing donor–acceptor polyimides , 2012 .

[33]  Sang-Wook Kim,et al.  Carrier transport mechanisms of nonvolatile write-once-read-many-times memory devices with InP–ZnS core-shell nanoparticles embedded in a polymethyl methacrylate layer , 2009 .

[34]  Ananth Dodabalapur,et al.  Charge carrier velocity distributions in high mobility polymer field-effect transistors , 2012 .

[35]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[36]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[37]  Tai-Yuan Lin,et al.  Rewritable, Moldable, and Flexible Sticker‐Type Organic Memory on Arbitrary Substrates , 2014 .

[38]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[39]  Hung-Ju Yen,et al.  Electrically bistable digital memory behaviors of thin films of polyimides based on conjugated bis(triphenylamine) derivatives , 2012 .

[40]  R. Ruoff,et al.  Graphene oxide thin films for flexible nonvolatile memory applications. , 2010, Nano letters.

[41]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[42]  D. A. Corley,et al.  Two-terminal molecular memories from solution-deposited C60 films in vertical silicon nanogaps. , 2010, ACS nano.

[43]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.

[44]  Yang Yang,et al.  Organic Donor–Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices , 2005, Advanced materials.

[45]  Yang Yang,et al.  Electrical memory devices based on inorganic/organic nanocomposites , 2012 .

[46]  Gang Liu,et al.  Preparation and Memory Performance of a Nanoaggregated Dispersed Red 1‐Functionalized Poly (N‐vinylcarbazole) Film via Solution‐Phase Self‐Assembly , 2010 .

[47]  Hyung Il Park,et al.  Flexible multilevel resistive memory with controlled charge trap B- and N-doped carbon nanotubes. , 2012, Nano letters.

[48]  Yan Song,et al.  Synthesis and dynamic random access memory behavior of a functional polyimide. , 2006, Journal of the American Chemical Society.

[49]  Dong Min Kim,et al.  Programmable Digital Memory Characteristics of Nanoscale Thin Films of a Fully Conjugated Polymer , 2009 .

[50]  Sunghoon Song,et al.  Flexible organic memory devices with multilayer graphene electrodes. , 2011, ACS nano.

[51]  H. Sirringhaus,et al.  Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. , 2011, Journal of the American Chemical Society.

[52]  S. Ding,et al.  Synthesis and memory characteristics of highly organo-soluble polyimides bearing a noncoplanar twisted biphenyl unit containing aromatic side-chain groups , 2011 .

[53]  Fei Zhao,et al.  Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. , 2010, ACS nano.

[54]  B. Cho,et al.  Organic Resistive Memory Devices: Performance Enhancement, Integration, and Advanced Architectures , 2011 .

[55]  Lili Liu,et al.  Synthesis of Alternating Copolysiloxane with Terthiophene and Perylenediimide Derivative Pendants for Involatile WORM Memory Device , 2014 .

[56]  Yuchao Yang,et al.  Oxide Resistive Memory with Functionalized Graphene as Built‐in Selector Element , 2014, Advanced materials.

[57]  Hua Zhang,et al.  Preparation of weavable, all-carbon fibers for non-volatile memory devices. , 2013, Angewandte Chemie.

[58]  Giovanni Piero Pepe,et al.  Enabling Strategies in Organic Electronics Using Ordered Block Copolymer Nanostructures , 2010, Advanced materials.