Using a neural network for predicting the average grain size in friction stir welding processes

In the paper the microstructural phenomena in terms of average grain size occurring in friction stir welding (FSW) processes are focused. A neural network was linked to a finite element model (FEM) of the process to predict the average grain size values. The utilized net was trained starting from experimental data and numerical results of butt joints and then tested on further butt, lap and T-joints. The obtained results show the capability of the AI technique in conjunction with the FE tool to predict the final microstructure in the FSW joints.

[1]  Jesper Henri Hattel,et al.  An analytical model for the heat generation in friction stir welding , 2004 .

[2]  Hidetoshi Fujii,et al.  Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy , 2003 .

[3]  Radovan Kovacevic,et al.  Finite element modeling of friction stir welding—thermal and thermomechanical analysis , 2003 .

[4]  K. Suzuki,et al.  Joining of 5083 and 6061 aluminum alloys by friction stir welding , 2003 .

[5]  Jorge E. Hurtado,et al.  Neural networks in stochastic mechanics , 2001 .

[6]  Livan Fratini,et al.  CDRX modelling in friction stir welding of aluminium alloys , 2005 .

[7]  L. Fratini,et al.  Metallurgical Phenomena Modeling in Friction Stir Welding of Aluminium Alloys: Analytical Versus Neural Network Based Approaches , 2008 .

[8]  M. Preuss,et al.  Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds , 2003 .

[9]  Radovan Kovacevic,et al.  Thermal modeling of friction stir welding in a moving coordinate system and its validation , 2003 .

[10]  A. Kawaguchi,et al.  Dissimilar Welding of Al and Mg Alloys by FSW , 2008 .

[11]  Mou Shansong,et al.  Improvement of blood compatibility of silicone rubber by the addition of hydroxyapatite , 2003 .

[12]  F. Walther,et al.  The Fatigue Behaviour of Friction Stir Welded Aluminium Joints , 2008 .

[13]  Livan Fratini,et al.  Finite element studies on friction stir welding processes of tailored blanks , 2008 .

[14]  A. A. Zadpoor,et al.  Finite element modeling and failure prediction of friction stir welded blanks , 2009 .

[15]  T. Mcnelley,et al.  Recrystallization mechanisms during friction stir welding/processing of aluminum alloys , 2008 .

[16]  Zhili Feng,et al.  Texture analysis of a friction stir processed 6061-T6 aluminum alloy using neutron diffraction , 2006 .

[17]  LiMin Fu,et al.  Neural networks in computer intelligence , 1994 .

[18]  P.M.S.T. de Castro,et al.  Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6 , 2009 .

[19]  Genki Yagawa,et al.  Neural networks in computational mechanics , 1996 .

[20]  T. Saeid,et al.  Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints , 2008 .

[21]  W. M. Thomas,et al.  Friction Stir Butt Welding , 1991 .

[22]  Livan Fratini,et al.  Material Flow in FSW of AA7075-T6 Butt Joints: Continuous Dynamic Recrystallization Phenomena , 2006 .

[23]  John G. Lenard,et al.  Mathematical and Physical Simulation of the Properties of Hot Rolled Products , 1999 .

[24]  C. Rodopoulos,et al.  Modelling of crack coalescence in 2024-T351 Al alloy friction stir welded joints , 2008 .

[25]  Seung-Boo Jung,et al.  The improvement of mechanical properties of friction-stir-welded A356 Al alloy , 2003 .

[26]  R. H. Wagoner,et al.  Properties of Friction-Stir Welded Aluminum Alloys 6111 and 5083 , 2008 .

[27]  Satish V. Kailas,et al.  The role of friction stir welding tool on material flow and weld formation , 2008 .

[28]  H. Kokawa,et al.  Experimental simulation of recrystallized microstructure in friction stir welded Al alloy using a plane-strain compression test , 2008 .