Recurrence relations and fast algorithms

Abstract We construct fast algorithms for evaluating transforms associated with families of functions which satisfy recurrence relations. These include algorithms both for computing the coefficients in linear combinations of the functions, given the values of these linear combinations at certain points, and, vice versa, for evaluating such linear combinations at those points, given the coefficients in the linear combinations; such procedures are also known as analysis and synthesis of series of certain special functions. The algorithms of the present paper are efficient in the sense that their computational costs are proportional to n ln n at any fixed precision of computations, where n is the amount of input and output data. Stated somewhat more precisely, we find a positive real number C such that, for any positive integer n ⩾ 10 and positive real number e ⩽ 1 / 10 , the algorithms require at most C n ( ln n ) ( ln ( 1 / e ) ) 3 floating-point operations to evaluate at n appropriately chosen points any linear combination of n special functions, given the coefficients in the linear combination, where e is the precision of computations.

[1]  S. Eisenstat,et al.  A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..

[2]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[3]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[4]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[5]  E. Hansen A Table of Series and Products , 1977 .

[6]  V. Rokhlin,et al.  A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics , 1998 .

[7]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[8]  Bradley K. Alpert,et al.  A Fast Spherical Filter with Uniform Resolution , 1997 .

[9]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[10]  Herbert S. Wilf,et al.  Mathematics for the Physical Sciences , 1976 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Mark Tygert,et al.  Fast Algorithms for Spherical Harmonic Expansions , 2006, SIAM J. Sci. Comput..

[13]  Vladimir Rokhlin,et al.  A Fast Algorithm for the Calculation of the Roots of Special Functions , 2007, SIAM J. Sci. Comput..

[14]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..

[15]  Vladimir Rokhlin,et al.  Sparse Diagonal Forms for Translation Operators for the Helmholtz Equation in Two Dimensions , 1995 .

[16]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[17]  William H. Press,et al.  Numerical recipes , 1990 .

[18]  Mark Tygert Analogues for Bessel Functions of the Christoffel-Darboux Identity , 2006 .

[19]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[20]  Frank Thomson Leighton,et al.  Preconditioned, Adaptive, Multipole-Accelerated Iterative Methods for Three-Dimensional First-Kind Integral Equations of Potential Theory , 1994, SIAM J. Sci. Comput..

[21]  Mark Tygert,et al.  Fast algorithms for spherical harmonic expansions, II , 2008, J. Comput. Phys..

[22]  Per-Gunnar Martinsson,et al.  An Accelerated Kernel-Independent Fast Multipole Method in One Dimension , 2007, SIAM J. Sci. Comput..