Least squares moving particle semi-implicit method

In this paper, a consistent meshfree Lagrangian approach for numerical analysis of incompressible flow with free surfaces, named least squares moving particle semi-implicit (LSMPS) method, is developed. The present methodology includes arbitrary high-order accurate meshfree spatial discretization schemes, consistent time integration schemes, and generalized treatment of boundary conditions. LSMPS method can resolve the existing major issues of widely used strong-form particle method for incompressible flow—particularly, the lack of consistency condition for spatial discretization schemes, difficulty in enforcing consistent Neumann boundary conditions, and serious instability like unphysical pressure oscillation. Applications of the present proposal demonstrate remarkable enhancements of stability and accuracy.

[1]  Romesh C. Batra,et al.  Symmetric smoothed particle hydrodynamics (SSPH) method and its application to elastic problems , 2009 .

[2]  Eugenio Oñate,et al.  The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .

[3]  J. K. Chen,et al.  A corrective smoothed particle method for boundary value problems in heat conduction , 1999 .

[4]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[5]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[6]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[7]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations , 2002 .

[8]  W. X. Wang,et al.  Isoparametric finite point method in computational mechanics , 2003 .

[9]  Romesh C. Batra,et al.  Modified smoothed particle hydrodynamics method and its application to transient problems , 2004 .

[10]  Hyun Gyu Kim,et al.  A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods , 1999 .

[11]  T. Belytschko,et al.  Crack propagation by element-free Galerkin methods , 1995 .

[12]  Weimin Han,et al.  Reproducing kernel element method. Part I: Theoretical formulation , 2004 .

[13]  Chan Ghee Koh,et al.  A new particle method for simulation of incompressible free surface flow problems , 2012 .

[14]  Sivakumar Kulasegaram,et al.  Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations , 2000 .

[15]  Masayuki Tanaka,et al.  Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility , 2010, J. Comput. Phys..

[16]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[17]  R. Franke A Critical Comparison of Some Methods for Interpolation of Scattered Data , 1979 .

[18]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[19]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[20]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[21]  J. Kuhnert,et al.  Finite Pointset Method Based on the Projection Method for Simulations of the Incompressible Navier-Stokes Equations , 2003 .

[22]  I. Babuska,et al.  The partition of unity method for the elastically supported beam , 1998 .

[23]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[24]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[25]  Gary A. Dilts,et al.  Moving least‐squares particle hydrodynamics II: conservation and boundaries , 2000 .

[26]  Ted Belytschko,et al.  ON THE COMPLETENESS OF MESHFREE PARTICLE METHODS , 1998 .

[27]  Satya N. Atluri,et al.  New concepts in meshless methods , 2000 .

[28]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations IV , 2005 .

[29]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[30]  Eugenio Oñate,et al.  Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows , 2008 .

[31]  T. Belytschko,et al.  A new implementation of the element free Galerkin method , 1994 .

[32]  M. Stone The Generalized Weierstrass Approximation Theorem , 1948 .

[33]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[34]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[35]  Seiichi Koshizuka,et al.  Erratum to: Least squares moving particle semi-implicit method , 2014 .

[36]  Sudarshan Tiwari,et al.  A Numerical Scheme for Solving Incompressible and Low Mach Number Flows by the Finite Pointset Method , 2005 .

[37]  Sudarshan Tiwari,et al.  Modeling of two-phase flows with surface tension by finite pointset method (FPM) , 2007 .

[38]  Hitoshi Gotoh,et al.  Enhancement of stability and accuracy of the moving particle semi-implicit method , 2011, J. Comput. Phys..

[39]  Abbas Khayyer,et al.  Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure , 2009 .

[40]  W. Rudin Principles of mathematical analysis , 1964 .

[41]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[42]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[43]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[44]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[45]  R. A. Uras,et al.  Generalized multiple scale reproducing kernel particle methods , 1996 .

[46]  Weimin Han,et al.  Error analysis of the reproducing kernel particle method , 2001 .

[47]  Satya N. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics , 2000 .

[48]  T. Liszka,et al.  The finite difference method at arbitrary irregular grids and its application in applied mechanics , 1980 .

[49]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[50]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[51]  S. Koshizuka,et al.  International Journal for Numerical Methods in Fluids Numerical Analysis of Breaking Waves Using the Moving Particle Semi-implicit Method , 2022 .

[52]  J. Z. Zhu,et al.  The finite element method , 1977 .

[53]  J. K. Chen,et al.  A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems , 2000 .

[54]  Hitoshi Gotoh,et al.  Development of CMPS Method for Accurate Water-Surface Tracking in Breaking Waves , 2008 .

[55]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[56]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[57]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[58]  Seiya Itori,et al.  AN IMPROVEMENT OF DIRICHLET BOUNDARY CONDITIONS IN NUMERICAL SIMULATIONS USING MPS METHOD , 2012 .

[59]  Jian Cao,et al.  Reproducing kernel element method Part III: Generalized enrichment and applications , 2004 .

[60]  E. Oñate,et al.  A stabilized finite point method for analysis of fluid mechanics problems , 1996 .

[61]  T. Belytschko,et al.  Fracture and crack growth by element free Galerkin methods , 1994 .

[62]  J. K. Chen,et al.  Completeness of corrective smoothed particle method for linear elastodynamics , 1999 .

[63]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[64]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[65]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[66]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[67]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[68]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[69]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[70]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[71]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[72]  Seiichi Koshizuka,et al.  Improvement of stability in moving particle semi‐implicit method , 2011 .

[73]  G. R. Johnson,et al.  NORMALIZED SMOOTHING FUNCTIONS FOR SPH IMPACT COMPUTATIONS , 1996 .

[74]  Eugenio Oñate,et al.  A mesh-free finite point method for advective-diffusive transport and fluid flow problems , 1998 .

[75]  Aamer Haque,et al.  Three-dimensional boundary detection for particle methods , 2007, J. Comput. Phys..

[76]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[77]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[78]  Tsunakiyo Iribe,et al.  A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS , 2010 .

[79]  N. Aluru A point collocation method based on reproducing kernel approximations , 2000 .

[80]  Shaofan Li,et al.  Reproducing kernel element method. Part IV: Globally compatible Cn (n ≥ 1) triangular hierarchy , 2004 .

[81]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[82]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[83]  Weimin Han,et al.  Reproducing kernel element method Part II: Globally conforming Im/Cn hierarchies , 2004 .

[84]  Eugenio Oñate,et al.  A finite point method for elasticity problems , 2001 .

[85]  M. Lastiwka,et al.  Truncation error in mesh‐free particle methods , 2006 .

[86]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[87]  Hyun Gyu Kim,et al.  Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations , 1999 .

[88]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[89]  Hitoshi Gotoh,et al.  New Assessment Criterion of Free Surface for Stabilizing Pressure Field in Particle Method , 2009 .

[90]  R. D. Richtmyer,et al.  Survey of the stability of linear finite difference equations , 1956 .

[91]  T. Liszka An interpolation method for an irregular net of nodes , 1984 .

[92]  Shaofan Li,et al.  Reproducing kernel hierarchical partition of unity, Part I—formulation and theory , 1999 .

[93]  T. Liszka,et al.  hp-Meshless cloud method , 1996 .

[94]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[95]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[96]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[97]  M. Stone Applications of the theory of Boolean rings to general topology , 1937 .

[98]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[99]  Abbas Khayyer,et al.  A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method , 2010 .