Exploring the performance of spatial stochastic simulation algorithms

Since the publication of Gillespie's direct method, diverse methods have been developed to improve the performance of stochastic simulation methods and to enter the spatial realm. In this paper we discuss a spatial @t-leaping variant (S@t) that extends the basic leap method. S@t takes reaction and both outgoing and incoming diffusion events into account when calculating a leap candidate. A performance analysis shall reveal details on the achieved success in balancing speed and accuracy in comparison to other methods. However, performance analysis of spatial stochastic algorithms requires significant effort - it is crucial to choose suitable (benchmark) models and to carefully define model and simulation setups that take problem and simulation design spaces into account.

[1]  B N Kholodenko,et al.  Spatial gradients of cellular phospho‐proteins , 1999, FEBS letters.

[2]  D. Gillespie,et al.  Avoiding negative populations in explicit Poisson tau-leaping. , 2005, The Journal of chemical physics.

[3]  Jaap A. Kaandorp,et al.  Spatial stochastic modelling of the phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli , 2006, Bioinform..

[4]  David S. Johnson,et al.  A theoretician's guide to the experimental analysis of algorithms , 1999, Data Structures, Near Neighbor Searches, and Methodology.

[5]  Adelinde M. Uhrmacher,et al.  The event queue problem and PDevs , 2007, SpringSim '07.

[6]  Linda R. Petzold,et al.  Accuracy limitations and the measurement of errors in the stochastic simulation of chemically reacting systems , 2006, J. Comput. Phys..

[7]  RICK SIOW MONG GOH,et al.  MLIST : AN EFFICIENT PENDING EVENT SET STRUCTURE FOR DISCRETE EVENT SIMULATION , 2004 .

[8]  D G Vlachos Temporal coarse-graining of microscopic-lattice kinetic Monte Carlo simulations via tau leaping. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Roland Ewald,et al.  Large-Scale Design Space Exploration of SSA , 2008, CMSB.

[10]  Linda R Petzold,et al.  Efficient step size selection for the tau-leaping simulation method. , 2006, The Journal of chemical physics.

[11]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[12]  Dietmar Wendt,et al.  The Markoff Automaton: A New Algorithm For Simulating The Time-Evolution Of Large Stochastic Dynamic Systems , 1995 .

[13]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[14]  David J. Murray-Smith,et al.  Continuous System Simulation , 1994 .

[15]  Tatiana T Marquez-Lago,et al.  Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics. , 2007, The Journal of chemical physics.

[16]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[17]  Donald E. Knuth,et al.  Big Omicron and big Omega and big Theta , 1976, SIGA.

[18]  Werner Sandmann,et al.  Streamlined formulation of adaptive explicit-implicit tau-leaping with automatic tau selection , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[19]  Diego Rossinelli,et al.  Accelerated stochastic and hybrid methods for spatial simulations of reaction–diffusion systems , 2008 .

[20]  J. Elf,et al.  Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. , 2004, Systems biology.

[21]  Muruhan Rathinam,et al.  Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method , 2003 .

[22]  John N. Hooker,et al.  Needed: An Empirical Science of Algorithms , 1994, Oper. Res..

[23]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[24]  Andreas Hellander,et al.  An adaptive algorithm for simulation of stochastic reaction-diffusion processes , 2010, J. Comput. Phys..

[25]  Paulette Clancy,et al.  Accurate implementation of leaping in space: the spatial partitioned-leaping algorithm. , 2010, The Journal of chemical physics.

[26]  Adelinde M. Uhrmacher,et al.  Plug'n Simulate , 2007, 40th Annual Simulation Symposium (ANSS'07).

[27]  K. Burrage,et al.  Binomial leap methods for simulating stochastic chemical kinetics. , 2004, The Journal of chemical physics.

[28]  Damien Hall,et al.  Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. , 2003, Biochimica et biophysica acta.

[29]  Abhijit Chatterjee,et al.  Temporal acceleration of spatially distributed kinetic Monte Carlo simulations , 2006 .

[30]  A. Minton Excluded volume as a determinant of macromolecular structure and reactivity , 1981 .

[31]  Adelinde M. Uhrmacher,et al.  Automating the runtime performance evaluation of simulation algorithms , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[32]  Don T. Phillips,et al.  A two-list synchronization procedure for discrete event simulation , 1981, CACM.

[33]  D. Vlachos,et al.  Binomial distribution based tau-leap accelerated stochastic simulation. , 2005, The Journal of chemical physics.

[34]  Richard E. Ladner,et al.  The influence of caches on the performance of sorting , 1997, SODA '97.

[35]  R. Plackett,et al.  Karl Pearson and the Chi-squared Test , 1983 .