GILBERT UPCONVERSION MIXERS USING SINGLE-BAND/DUAL-BAND LC CURRENT COMBINERS

The 0.35-μm SiGe BiCMOS high linearity Gilbert upconverters are demonstrated in this article by utilizing NMOS and PMOS transconductance amplifiers (TCAs), respectively. To improve the linearity of a Gilbert upconverter, the IF input TCA is replaced by a bias-offset differential pair. A reactive LC current combiner is used as the load of the Gilbert mixer to double the output current. The upconverter with an NMOS TCA achieves the conversion gain of −4 dB, the OP1dB of −11 dBm, and the OIP3 of 5.5 dBm, whereas the other one with a PMOS TCA has the conversion gain, OP1dB, and OIP3 of −6 dB, −11 dBm, and 9.5 dBm, respectively. Furthermore, the LC current combiner can be extended to a dual-band version. The 2.4/5.7 GHz dual-band upconverter is also demonstrated in this work. The conversion gain at 2.4/5.7 GHz is −3/−3.5 dB with the OP1dB of −15.5/−15 dBm and the OIP3 of −2.5/−3 dBm, respectively. © 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 1718–1722, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24433

[1]  Guo-Wei Huang,et al.  A 5.7 GHz Gilbert Upconversion Mixer with an LC Current Combiner Output Using 0.35 µm SiGe HBT Technology , 2005, IEICE Trans. Electron..

[2]  John D. Cressler,et al.  A 28-GHz SiGe up-conversion mixer using a series-connected triplet for higher dynamic range and improved IF port return loss , 2006, IEEE Journal of Solid-State Circuits.

[3]  Guo-Wei Huang,et al.  A Fully Integrated 5.2 GHz SiGe HBT Upconversion Micromixer Using Lumped Balun and LC Current Combiner , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[4]  R. Meyer,et al.  High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages , 1998, IEEE J. Solid State Circuits.

[5]  Hwann-Kaeo Chiou,et al.  Miniature MMIC star double balanced mixer using lumped dual balun , 1997 .

[6]  K. Pressel,et al.  A current-folded up-conversion mixer and VCO with center-tapped inductor in a SiGe-HBT technology for 5-GHz wireless LAN applications , 2000, IEEE Journal of Solid-State Circuits.

[7]  M. Tentzeris,et al.  Broadband circularly polarized rectangular loop antenna with impedance matching , 2006, IEEE Microwave and Wireless Components Letters.

[8]  Yuichi Murakami,et al.  RECTANGULAR LOOP ANTENNA FOR CIRCULAR POLARIZATION , 1996 .

[9]  W. Guggenbuhl,et al.  A voltage-controllable linear MOS transconductor using bias offset technique , 1990 .

[10]  Manos M. Tentzeris,et al.  Bandwidth and gain improvement of a circularly polarized dual-rhombic loop antenna , 2006, IEEE Antennas and Wireless Propagation Letters.

[11]  F. Ellinger,et al.  26.5-30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology with high linearity for WLAN , 2005, IEEE Transactions on Microwave Theory and Techniques.

[12]  Barrie Gilbert,et al.  The multi-tanh principle: a tutorial overview , 1998, IEEE J. Solid State Circuits.

[13]  E. Seevinck,et al.  A versatile CMOS linear transconductor/square-law function , 1987 .