Regional conditions cause contrasting behaviour in U-isotope fractionation in black shales: Constraints for global ocean palaeo-redox reconstructions

[1]  R. Wood,et al.  Environmental controls on very high δ238U values in reducing sediments: Implications for Neoproterozoic seawater records , 2023, Earth-Science Reviews.

[2]  C. Holmden,et al.  Uranium isotope reconstruction of ocean deoxygenation during OAE 2 hampered by uncertainties in fractionation factors and local U-cycling , 2022, Geochimica et Cosmochimica Acta.

[3]  N. Planavsky,et al.  Uranium isotope evidence for extensive shallow water anoxia in the early Tonian oceans , 2022, Earth and Planetary Science Letters.

[4]  E. al.,et al.  Supplemental Material: No effect of thermal maturity on the Mo, U, Cd, and Zn isotope compositions of Lower Jurassic organic-rich sediments , 2022, Geology.

[5]  R. D. Evans,et al.  Authigenic uranium isotopes of late Proterozoic black shale , 2021, Chemical Geology.

[6]  F. Huang,et al.  Temporally and spatially dynamic redox conditions on an upwelling margin: The impact on coupled sedimentary Mo and U isotope systematics, and implications for the Mo-U paleoredox proxy , 2021 .

[7]  F. Scholz,et al.  A new view on the evolution of seawater molybdenum inventories before and during the Cretaceous Oceanic Anoxic Event 2 , 2021 .

[8]  E. al.,et al.  Supplemental Material: Anoxic depositional overprinting of 238U/235U in calcite: When do carbonates tell black shale tales? , 2021, Geology.

[9]  N. Planavsky,et al.  Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records , 2021, Earth-Science Reviews.

[10]  Melissa J. Murphy,et al.  New Constraints on Global Geochemical Cycling During Oceanic Anoxic Event 2 (Late Cretaceous) From a 6‐Million‐year Long Molybdenum‐Isotope Record , 2021, Geochemistry, Geophysics, Geosystems.

[11]  B. Kendall,et al.  Estimating ancient seawater isotope compositions and global ocean redox conditions by coupling the molybdenum and uranium isotope systems of euxinic organic-rich mudrocks , 2020 .

[12]  Liyan Xing,et al.  Inverse correlation between the molybdenum and uranium isotope compositions of Upper Devonian black shales caused by changes in local depositional conditions rather than global ocean redox variations , 2020, Geochimica et Cosmochimica Acta.

[13]  M. Bar-Matthews,et al.  Rapid onset of ocean anoxia shown by high U and low Mo isotope compositions of sapropel S1 , 2020 .

[14]  N. Planavsky,et al.  Correlated molybdenum and uranium isotope signatures in modern anoxic sediments: Implications for their use as paleo-redox proxy , 2020 .

[15]  A. Anbar,et al.  Evidence for high organic carbon export to the early Cambrian seafloor , 2020 .

[16]  K. Maher,et al.  Uranium reduction and isotopic fractionation in reducing sediments: Insights from reactive transport modeling , 2020 .

[17]  A. Anbar,et al.  Two distinct episodes of marine anoxia during the Permian-Triassic crisis evidenced by uranium isotopes in marine dolostones , 2020 .

[18]  T. Lenton,et al.  Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2 , 2018, Proceedings of the National Academy of Sciences.

[19]  M. Bar-Matthews,et al.  Anoxic development of sapropel S1 in the Nile Fan inferred from redox sensitive proxies, Fe speciation, Fe and Mo isotopes , 2017 .

[20]  A. Dickson A molybdenum-isotope perspective on Phanerozoic deoxygenation events , 2017 .

[21]  K. Maher,et al.  Uranium isotope evidence for an expansion of marine anoxia during the end‐Triassic extinction , 2017 .

[22]  M. Rijkenberg,et al.  Uranium stable isotope fractionation in the Black Sea: Modern calibration of the 238 U/ 235 U paleo-redox proxy , 2017 .

[23]  H. Jenkyns,et al.  Basalt‐seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian–Turonian, Late Cretaceous) , 2017 .

[24]  C. Lowery,et al.  Patterns of local and global redox variability during the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy , 2017 .

[25]  C. Stirling,et al.  Uranium isotope fractionation , 2017 .

[26]  A. Montanari,et al.  Orbital control on the timing of oceanic anoxia in the Late Cretaceous , 2016 .

[27]  D. Porcelli,et al.  Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous) , 2016 .

[28]  L. Kump,et al.  Marine anoxia and delayed Earth system recovery after the end-Permian extinction , 2016, Proceedings of the National Academy of Sciences.

[29]  F. Russo,et al.  Carbon- and oxygen-isotope records of mid-Cretaceous Tethyan pelagic sequences from the Umbria – Marche and Belluno Basins (Italy) , 2015 .

[30]  T. Johnson,et al.  Low temperature equilibrium isotope fractionation and isotope exchange kinetics between U(IV) and U(VI) , 2015 .

[31]  A. Ridgwell,et al.  Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian‐Turonian OAE 2 , 2015 .

[32]  A. Anbar,et al.  Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period , 2015 .

[33]  E. Rohling,et al.  Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels) , 2015 .

[34]  C. Holmden,et al.  Uranium isotope fractionation in Saanich Inlet: A modern analog study of a paleoredox tracer , 2015 .

[35]  S. Eckert,et al.  Uranium and molybdenum isotope systematics in modern euxinic basins: Case studies from the central Baltic Sea and the Kyllaren fjord (Norway) , 2015 .

[36]  S. Robinson,et al.  Heterogeneous oxygenation states in the Atlantic and Tethys oceans during Oceanic Anoxic Event 2 , 2014 .

[37]  T. Lyons,et al.  A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox , 2014 .

[38]  A. Almogi‐Labin,et al.  Evidence from molybdenum and iron isotopes and molybdenum–uranium covariation for sulphidic bottom waters during Eastern Mediterranean sapropel S1 formation , 2014 .

[39]  A. Anbar,et al.  Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50Ga , 2013 .

[40]  Guangping Xu,et al.  Digestion methods for trace element measurements in shales: Paleoredox proxies examined , 2012 .

[41]  A. Anbar,et al.  Uranium isotope fractionation during adsorption to Mn-oxyhydroxides. , 2011, Environmental science & technology.

[42]  Bernhard Schnetger,et al.  A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins , 2010 .

[43]  A. Anbar,et al.  Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: A quantitative approach using U isotopes , 2010 .

[44]  L. Lanci,et al.  Astronomical tuning of the Cenomanian Scaglia Bianca Formation at Furlo, Italy , 2010 .

[45]  H. Jenkyns Geochemistry of oceanic anoxic events , 2010 .

[46]  D. Canfield,et al.  The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland , 2010 .

[47]  T. Algeo,et al.  Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation , 2009 .

[48]  A. Cohen,et al.  Quantitative Separation of Molybdenum and Rhenium from Geological Materials for Isotopic Determination by MC‐ICP‐MS , 2009 .

[49]  W. Berelson,et al.  Molybdenum behavior during early diagenesis: Insights from Mo isotopes , 2009 .

[50]  D. Bernoulli,et al.  Ancient oceans and continental margins of the Alpine‐Mediterranean Tethys: deciphering clues from Mesozoic pelagic sediments and ophiolites , 2009 .

[51]  A. Anbar,et al.  Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides , 2008 .

[52]  T. Johnson,et al.  Effective isotopic fractionation factors for solute removal by reactive sediments: a laboratory microcosm and slurry study. , 2008, Environmental science & technology.

[53]  M. Böttcher,et al.  Sulfidity controls molybdenum isotope fractionation into euxinic sediments: Evidence from the modern Black Sea , 2008 .

[54]  E. Boyle,et al.  Natural fractionation of 238U/235U , 2008 .

[55]  C. Stirling,et al.  Low-temperature isotopic fractionation of uranium , 2007 .

[56]  Y. Erel,et al.  Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian‐Turonian oceanic anoxic event , 2007 .

[57]  K. Föllmi,et al.  The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation? , 2007 .

[58]  Stefan Schouten,et al.  Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic , 2007 .

[59]  H. Brumsack,et al.  Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of central Italy , 2006 .

[60]  T. Lyons,et al.  Trace metals as paleoredox and paleoproductivity proxies: An update , 2006 .

[61]  M. Nomura,et al.  Temperature Dependence of Isotope Effects in Uranium Chemical Exchange Reactions , 2006 .

[62]  B. Sageman,et al.  Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype , 2006 .

[63]  J. Tossell Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution , 2005 .

[64]  P. Wilson,et al.  Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic , 2005 .

[65]  T. Algeo Can marine anoxic events draw down the trace element inventory of seawater , 2004 .

[66]  M. Petrizzo,et al.  Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: correlation and implications based on three key localities , 2004, Journal of the Geological Society.

[67]  A. Anbar,et al.  Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans , 2004, Science.

[68]  A. Anbar,et al.  Molybdenum isotope fractionation during adsorption by manganese oxides , 2004 .

[69]  H. Jenkyns Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[70]  J. Kramers,et al.  Molybdenum isotope records as a potential new proxy for paleoceanography , 2003 .

[71]  R. Pancost,et al.  Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event , 2002 .

[72]  William J. Jenkins,et al.  A reevaluation of the oceanic uranium budget for the Holocene , 2002 .

[73]  R. Tyson,et al.  Modern and ancient continental shelf anoxia: an overview , 1991, Geological Society, London, Special Publications.

[74]  W. Kuhnt Agglutinated foraminifera of western Mediterranean Upper Cretaceous pelagic limestones (Umbrian Apennines, Italy, and Betic Cordillera, southern Spain) , 1990 .

[75]  P. Scholle,et al.  Carbon Isotope Fluctuations in Cretaceous Pelagic Limestones: Potential Stratigraphic and Petroleum Exploration Tool , 1980 .

[76]  K. Turekian,et al.  Distribution of the Elements in Some Major Units of the Earth's Crust , 1961 .