THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION

The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers, and combined with a focal length of 10.14 meters this enables operation from 3-79 keV. The optics focus onto two focal plane arrays, each consisting of 4 CdZnTe pixel detectors, for a field of view of 12.5 arcminutes. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity, and with an effective point spread function FWHM of 18 arcseconds (HPD ~1), NuSTAR provides a leap of improvement in resolution over the collimated or coded mask instruments that have operated in this bandpass. We present in-orbit performance details of the observatory and highlight important science results from the first two years of the mission.

[1]  P. Giommi,et al.  Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in Cassiopeia A , 2014, Nature.

[2]  Didier Barret,et al.  THE BROADBAND XMM-NEWTON AND NuSTAR X-RAY SPECTRA OF TWO ULTRALUMINOUS X-RAY SOURCES IN THE GALAXY IC 342 , 2014, 1401.4637.

[3]  University of Cambridge,et al.  Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using NuSTAR , 2013, 1310.5776.

[4]  A. Hall Applied Optics. , 2022, Science.

[5]  Keith Jahoda,et al.  ADVANCES IN THE RXTE PROPORTIONAL COUNTER ARRAY CALIBRATION: NEARING THE STATISTICAL LIMIT , 2012, 1208.2000.

[6]  Kristin K. Madsen,et al.  NuSTAR OBSERVATIONS OF MAGNETAR 1E 1841−045 , 2013, 1310.6221.

[7]  Space Science Reviews , 1962, Nature.

[8]  Didier Barret,et al.  THE ULTRALUMINOUS X-RAY SOURCES NGC 1313 X-1 AND X-2: A BROADBAND STUDY WITH NuSTAR AND XMM-Newton , 2013, 1310.0745.

[9]  William W. Zhang,et al.  First results from the ground calibration of the NuSTAR flight optics , 2011, Optical Engineering + Applications.

[10]  J. N. Reeves,et al.  VARIABILITY OF THE HIGH-VELOCITY OUTFLOW IN THE QUASAR PDS 456 , 2013, 1311.0734.

[11]  Ryan McLean,et al.  Calibration and alignment of metrology system for the Nuclear Spectroscopic Telescope Array mission , 2012 .

[12]  C. B. Markwardt,et al.  TIMING AND FLUX EVOLUTION OF THE GALACTIC CENTER MAGNETAR SGR J1745−2900 , 2014, 1403.5344.

[13]  Takao Kitaguchi,et al.  Spectral calibration and modeling of the NuSTAR CdZnTe pixel detectors , 2011, Optical Engineering + Applications.

[14]  A. Zezas,et al.  NuSTAR AND CHANDRA INSIGHT INTO THE NATURE OF THE 3–40 keV NUCLEAR EMISSION IN NGC 253 , 2013, 1306.2639.

[15]  R. P. Eatough,et al.  A strong magnetic field around the supermassive black hole at the centre of the Galaxy , 2013, Nature.

[16]  S. Campana,et al.  Crab: the standard x-ray candle with all (modern) x-ray satellites , 2005, SPIE Optics + Photonics.

[17]  D. J. Walton,et al.  A rapidly spinning supermassive black hole at the centre of NGC 1365 , 2013, Nature.

[18]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[19]  Andreas Zoglauer,et al.  NuSTAR: system engineering and modeling challenges in pointing reconstruction for a deployable x-ray telescope , 2010, Astronomical Telescopes + Instrumentation.

[20]  J. M. Miller,et al.  Relativistic X-Ray Lines from the Inner Accretion Disks Around Black Holes , 2007, 0705.0540.

[21]  Krzysztof Iniewski,et al.  Semiconductor Radiation Detection Systems , 2018 .

[22]  J. M. Miller,et al.  X-ray and radio constraints on the mass of the black hole in swift J164449.3+573451 , 2011, 1106.2502.

[23]  D. J. Walton,et al.  NuSTAR AND XMM-NEWTON OBSERVATIONS OF NGC 1365: EXTREME ABSORPTION VARIABILITY AND A CONSTANT INNER ACCRETION DISK , 2014, 1404.5620.

[24]  Nicolai F. Brejnholt,et al.  NuSTAR on-ground calibration: II. Effective area , 2012, Other Conferences.

[25]  T. Tauris,et al.  Formation and evolution of compact stellar X-ray sources , 2003 .

[26]  Nicholas E. White,et al.  X-ray fluorescence from the inner disc in Cygnus X-1 , 1989 .

[27]  Didier Barret,et al.  AN EXTREMELY LUMINOUS AND VARIABLE ULTRALUMINOUS X-RAY SOURCE IN THE OUTSKIRTS OF CIRCINUS OBSERVED WITH NuSTAR , 2013, 1310.2633.

[28]  Juri Poutanen,et al.  Supercritically accreting stellar mass black holes as ultraluminous X-ray sources , 2006, astro-ph/0609274.

[29]  J. Laming,et al.  Accelerated Electrons in Cassiopeia A: An Explanation for the Hard X-Ray Tail , 2000, astro-ph/0008426.

[30]  Marta Volonteri,et al.  Cosmological Black Hole Spin Evolution by Mergers and Accretion , 2008, 0802.0025.

[31]  Carsten P. Jensen,et al.  Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array , 2009, Optical Engineering + Applications.

[32]  Marek Sikora,et al.  Black Hole Spin and Galactic Morphology , 2007, 0706.3900.

[33]  Roland Diehl,et al.  WHEN A STANDARD CANDLE FLICKERS , 2010, 1010.2679.

[34]  永井 豊 海外文献紹介 Optical Engineering , 1998 .

[35]  Nicolai F. Brejnholt,et al.  NuSTAR ground calibration: The Rainwater Memorial Calibration Facility (RaMCaF) , 2011, Optical Engineering + Applications.

[36]  Tod E. Strohmayer,et al.  EVIDENCE FOR AN INTERMEDIATE-MASS BLACK HOLE IN NGC 5408 X-1 , 2009, 0911.1076.

[37]  Kristin K. Madsen,et al.  NuSTAR STUDY OF HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF PWN G21.5−0.9 , 2014, 1405.3239.

[38]  Kristin K. Madsen,et al.  NuSTAR DISCOVERY OF A 3.76 s TRANSIENT MAGNETAR NEAR SAGITTARIUS A* , 2013, 1305.1945.

[39]  R. Petre,et al.  Conical imaging mirrors for high-speed x-ray telescopes. , 1985, Applied optics.

[40]  Joern Wilms,et al.  THE REFLECTION COMPONENT FROM CYGNUS X-1 IN THE SOFT STATE MEASURED BY NuSTAR AND SUZAKU , 2013, 1310.3830.

[41]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[42]  Kristin K. Madsen,et al.  NuSTAR on-ground calibration: I. Imaging quality , 2012, Other Conferences.

[43]  Technology,et al.  The Signature of ^44Ti in Cassiopeia A Revealed by IBIS/ISGRI on INTEGRAL , 2006, astro-ph/0606736.

[44]  University of Cambridge,et al.  NuSTAR SPECTROSCOPY OF GRS 1915+105: DISK REFLECTION, SPIN, AND CONNECTIONS TO JETS , 2013, 1308.4669.

[45]  V. M. Kaspi,et al.  NuSTAR DISCOVERY OF A YOUNG, ENERGETIC PULSAR ASSOCIATED WITH THE LUMINOUS GAMMA-RAY SOURCE HESS J1640−465 , 2014, 1405.0465.

[46]  Gordon Tajiri,et al.  NuSTAR hard x-ray optics design and performance , 2009, Optical Engineering + Applications.

[47]  P. Giommi,et al.  NuSTAR DETECTION OF THE BLAZAR B2 1023+25 AT REDSHIFT 5.3 , 2013, 1309.3280.

[48]  J. N. Reeves,et al.  An absorption origin for the X-ray spectral variability of MCG-6-30-15 , 2008, 0803.2680.

[49]  Didier Barret,et al.  THE DISK WIND IN THE RAPIDLY SPINNING STELLAR-MASS BLACK HOLE 4U 1630−472 OBSERVED WITH NuSTAR , 2014, 1401.3646.

[50]  Allan Hornstrup,et al.  Coatings for the NuSTAR mission , 2011, Optical Engineering + Applications.

[51]  M. Feroci,et al.  A STRONGLY MAGNETIZED PULSAR WITHIN THE GRASP OF THE MILKY WAY'S SUPERMASSIVE BLACK HOLE , 2013, 1307.6331.

[52]  Yunjin Kim,et al.  Nuclear Spectroscopic Telescope Array (NuSTAR) Mission , 2013, 2013 IEEE Aerospace Conference.

[53]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .