Estimation of risk-neutral density surfaces

Option price data is often used to infer risk-neutral densities for future prices of an underlying asset. Given the prices of a set of options on the same underlying asset with different strikes and maturities, we propose a nonparametric approach for estimating risk-neutral densities associated with several maturities. Our method uses bicubic splines in order to achieve the desired smoothness for the estimation and an optimization model to choose the spline functions that best fit the price data. Semidefinite programming is employed to guarantee the nonnegativity of the densities. We illustrate the process using synthetic option price data generated using log-normal and absolute diffusion processes as well as actual price data for options on the S&P 500 index. We also used the risk-neutral densities that we computed to price exotic options and observed that this approach generates prices that closely approximate the market prices of these options.

[1]  W. Feller TWO SINGULAR DIFFUSION PROBLEMS , 1951 .

[2]  Ioana Popescu,et al.  On the Relation Between Option and Stock Prices: A Convex Optimization Approach , 2002, Oper. Res..

[3]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[4]  A. Lo,et al.  Nonparametric Estimation of State‐Price Densities Implicit in Financial Asset Prices , 1998 .

[5]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[6]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[7]  Marco Avellaneda,et al.  Calibrating Volatility Surfaces Via Relative-Entropy Minimization , 1996 .

[8]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[9]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[10]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[11]  M. Rockinger,et al.  DENSITY FUNCTIONALS, WITH AN OPTION-PRICING APPLICATION , 2003, Econometric Theory.

[12]  P. Buchen,et al.  The Maximum Entropy Distribution of an Asset Inferred from Option Prices , 1996, Journal of Financial and Quantitative Analysis.

[13]  Luís N. Vicente,et al.  Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity , 2008, Eur. J. Oper. Res..

[14]  Leif Andersen,et al.  The equity option volatility smile: an implicit finite-difference approach , 1997 .

[15]  Jens Carsten Jackwerth,et al.  Recovering Probability Distributions from Contemporaneous Security Prices , 1996 .

[16]  Stefano Herzel,et al.  ARBITRAGE OPPORTUNITIES ON DERIVATIVES: A LINEAR PROGRAMMING APPROACH , 2005 .

[17]  Jens Carsten Jackwerth,et al.  Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review , 1999 .

[18]  V. Yakovenko,et al.  Probability distribution of returns in the Heston model with stochastic volatility , 2002, cond-mat/0203046.

[19]  Bhupinder Bahra Implied Risk-Neutral Probability Density Functions from Option Prices: Theory and Application , 1997 .

[20]  Stanley Osher,et al.  A technique for calibrating derivative security pricing models: numerical solution of an inverse problem , 1997 .

[21]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[22]  M. Rubinstein.,et al.  Recovering Probability Distributions from Option Prices , 1996 .

[23]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[24]  S. Ben Hamida,et al.  Recovering Volatility from Option Prices by Evolutionary Optimization , 2004 .

[25]  Jens Carsten Jackwerth,et al.  Option-Implied Risk-Neutral Distributions and Implied Binomial Trees , 1999 .

[26]  William Feller,et al.  Diffusion Processes in Genetics , 1951 .

[27]  M. Stutzer A Simple Nonparametric Approach to Derivative Security Valuation , 1996 .

[28]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[29]  T. Coleman,et al.  Reconstructing the Unknown Local Volatility Function , 1999 .

[30]  Jeff Fleming,et al.  Implied volatility functions: empirical tests , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[31]  Bernard Lapeyre,et al.  Introduction to Stochastic Calculus Applied to Finance , 2007 .

[32]  Endre Süli,et al.  Computation of Deterministic Volatility Surfaces , 1998 .

[33]  Stéphane Crépey Calibration of the local volatility in a trinomial tree using Tikhonov regularization , 2003 .

[34]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[35]  R. Hafner,et al.  Arbitrage-free estimation of the risk-neutral density from the implied volatility smile , 2002 .

[36]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[37]  Andrew W. Lo,et al.  Nonparametric estimation of state-price densities implicit in financial asset prices , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[38]  Oleg Bondarenko Estimation of Risk-Neutral Densities Using Positive Convolution Approximation , 2002 .