High-entropy perovskite oxides for direct solar-driven thermochemical CO2 splitting

[1]  Woochul Yang,et al.  A Mesh Cladding-Structured Sr-Doped Lafeo3/Bi4o5br2 Photocatalyst: Integration of Oxygen Vacanices and Z-Scheme Heterojunction Toward Enhanced Co2 Photoreduction , 2023, SSRN Electronic Journal.

[2]  Jingshan Luo,et al.  Ethanol Assisted Cyclic Voltammetry Treatment of Copper for Electrochemical CO2 Reduction to Ethylene , 2022, Materials Today Energy.

[3]  Zichen Song,et al.  Synergistic oxygen vacancy and Zn-doping on SnO2 nanosheets for enhanced electrochemical CO2 conversion , 2022, Materials Today Energy.

[4]  Da Li,et al.  Research advances in the light-driven conversion of CO2 to valuable chemicals by two-dimensional nanomaterials , 2022, Materials Today Energy.

[5]  Y. Xuan,et al.  Direct Solar Thermochemical Co2 Splitting Based on Ca- and Al- Doped Smmno3 Perovskites: Ultrahigh Co Yield within Small Temperature Swing , 2022, SSRN Electronic Journal.

[6]  T. Keenan,et al.  Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability , 2022, Nature Communications.

[7]  H. Haberl,et al.  Potential for future reductions of global GHG and air pollutants from circular waste management systems , 2022, Nature Communications.

[8]  Y. Xuan,et al.  Sr-doped SmMnO3 perovskites for high-performance near-isothermal solar thermochemical CO2-to-fuel conversion , 2021, Sustainable Energy & Fuels.

[9]  E. Carter,et al.  Factors Governing Oxygen Vacancy Formation in Oxide Perovskites. , 2021, Journal of the American Chemical Society.

[10]  Y. Xuan,et al.  Ca- and Ga-Doped LaMnO3 for Solar Thermochemical CO2 Splitting with High Fuel Yield and Cycle Stability , 2021, ACS Applied Energy Materials.

[11]  K. Polychronopoulou,et al.  High entropy oxides-exploring a paradigm of promising catalysts: A review , 2021, Materials & Design.

[12]  A. Steinfeld,et al.  Reversible Phase Transformations in Novel Ce‐Substituted Perovskite Oxide Composites for Solar Thermochemical Redox Splitting of CO2 , 2021, Advanced Energy Materials.

[13]  E. Carter,et al.  Exploring Ca–Ce–M–O (M = 3d Transition Metal) Oxide Perovskites for Solar Thermochemical Applications , 2020 .

[14]  S. Jana,et al.  High-Entropy Perovskites: An Emergent Class of Oxide Thermoelectrics with Ultralow Thermal Conductivity , 2020 .

[15]  P. R. Westmoreland,et al.  Effect of Sodium Tungstate Promoter on the Reduction Kinetics of CaMn0.9Fe0.1O3 for Chemical Looping – Oxidative Dehydrogenation of Ethane , 2020 .

[16]  Lei Wang,et al.  Experimental study on the high performance of Zr doped LaCoO3 for solar thermochemical CO production , 2020, Chemical Engineering Journal.

[17]  W. Chueh,et al.  High-capacity thermochemical CO2 dissociation using iron-poor ferrites , 2020 .

[18]  S. Curtarolo,et al.  High-entropy ceramics , 2020, Nature Reviews Materials.

[19]  T. Oku Crystal structures of perovskite halide compounds used for solar cells , 2020, REVIEWS ON ADVANCED MATERIALS SCIENCE.

[20]  S. Abanades,et al.  Lanthanum manganite perovskite ceramic powders for CO2 splitting: Influence of Pechini synthesis parameters on sinterability and reactivity , 2019, Ceramics International.

[21]  Zachary D. Hood,et al.  Modifying La0.6Sr0.4MnO3 Perovskites with Cr Incorporation for Fast Isothermal CO2‐Splitting Kinetics in Solar‐Driven Thermochemical Cycles , 2019, Advanced Energy Materials.

[22]  W. Lipiński,et al.  Electrospun Manganese-Based Perovskites as Efficient Oxygen Exchange Redox Materials for Improved Solar Thermochemical CO2 Splitting , 2019, ACS Applied Energy Materials.

[23]  Qingsong Wang,et al.  High‐Entropy Oxides: Fundamental Aspects and Electrochemical Properties , 2019, Advanced materials.

[24]  A. McDaniel,et al.  BaCe0.25Mn0.75O3−δ—a promising perovskite-type oxide for solar thermochemical hydrogen production , 2018 .

[25]  A. Steinfeld,et al.  Comparing the solar-to-fuel energy conversion efficiency of ceria and perovskite based thermochemical redox cycles for splitting H2O and CO2 , 2018, International Journal of Hydrogen Energy.

[26]  R. Bhosale,et al.  Nanostructured co-precipitated Ce0.9Ln0.1O2 (Ln = La, Pr, Sm, Nd, Gd, Tb, Dy, or Er) for thermochemical conversion of CO2 , 2018, Ceramics International.

[27]  Youjun Lu,et al.  Reactivity of Ni, Cr and Zr doped ceria in CO2 splitting for CO production via two-step thermochemical cycle , 2018, International Journal of Hydrogen Energy.

[28]  S. Abanades,et al.  Experimental screening of perovskite oxides as efficient redox materials for solar thermochemical CO2 conversion , 2018 .

[29]  Christopher J. Bartel,et al.  New tolerance factor to predict the stability of perovskite oxides and halides , 2018, Science Advances.

[30]  A. Weimer,et al.  Isothermal redox for H2O and CO2 splitting – A review and perspective , 2017 .

[31]  A. Steinfeld,et al.  Trends in the phase stability and thermochemical oxygen exchange of ceria doped with potentially tetravalent metals , 2017 .

[32]  A. Steinfeld,et al.  Tunable thermodynamic activity of La x Sr1-x Mn y Al1-y O3-δ (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) perovskites for solar thermochemical fuel synthesis. , 2017, Journal of materials chemistry. A.

[33]  J. Saal,et al.  High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications , 2016 .

[34]  C. Rao,et al.  Splitting of CO2 by Manganite Perovskites to Generate CO by Solar Isothermal Redox Cycling , 2016 .

[35]  Ram B. Gupta,et al.  Assessment of CexZryHfzO2 based oxides as potential solar thermochemical CO2 splitting materials , 2016 .

[36]  A. Steinfeld,et al.  Oxygen nonstoichiometry, defect equilibria, and thermodynamic characterization of LaMnO3 perovskites with Ca/Sr A-site and Al B-site doping , 2016 .

[37]  E. Coker,et al.  Predicting the solar thermochemical water splitting ability and reaction mechanism of metal oxides: a case study of the hercynite family of water splitting cycles , 2015 .

[38]  A. Govindaraj,et al.  Noteworthy performance of La(1-x)Ca(x)MnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2. , 2015, Physical chemistry chemical physics : PCCP.

[39]  J. Kitchin,et al.  Effects of Concentration, Crystal Structure, Magnetism, and Electronic Structure Method on First-Principles Oxygen Vacancy Formation Energy Trends in Perovskites , 2014 .

[40]  Michele Pavone,et al.  Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. , 2014, Accounts of chemical research.

[41]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[42]  W. Chueh,et al.  Sr- and Mn-doped LaAlO3-δ for solar thermochemical H2 and CO production , 2013 .

[43]  G. Flamant,et al.  CO2 and H2O Splitting for Thermochemical Production of Solar Fuels Using Nonstoichiometric Ceria and Ceria/Zirconia Solid Solutions , 2011 .

[44]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[45]  Takashi Nakamura,et al.  Oxygen nonstoichiometry and defect equilibrium in La2 − xSrxNiO4 + δ , 2009 .

[46]  Masatsugu Oishi,et al.  Oxygen nonstoichiometry and defect structure analysis of B-site mixed perovskite-type oxide (La, Sr)(Cr, M)O3−δ (M=Ti, Mn and Fe) , 2008 .

[47]  G. Ceder,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.

[48]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[49]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[50]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[51]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[52]  J. Rupp,et al.  Modeling Thermochemical Solar‐to‐Fuel Conversion: CALPHAD for Thermodynamic Assessment Studies of Perovskites, Exemplified for (La,Sr)MnO3 , 2017 .

[53]  P. Blöchl,et al.  Projector augmented wave method:ab initio molecular dynamics with full wave functions , 2003 .