Theoretical Chemistry Comes Alive: Full Partner with Experiment

During the last decade, advances in computational techniques and in the extraction of chemically useful concepts from electronic wave functions have put theorists into the mainstream of chemistry. Some recent examples of the prediction of spectroscopic quantities and the elucidation of catalytic processes for homogeneous and heterogeneous reactions from theoretical calculations are used to illustrate how theory and experiment are now full partners in chemical research. It is expected that during the next decade the thrust of theoretical chemistry will be to combine the knowledge of fundamental chemical steps and fundamental interactions with advances in chemical dynamics and irreversible statistical mechanics and in computer technology to produce simulations of chemical systems with competing reactions taking place simultaneously at various reaction sites. The promise of such simulation is illustrated by a study of the enzyme thermolysin.

[1]  W. C. Lineberger,et al.  Laser photoelectron spectroscopy of vibrationally relaxed CH−2: A reinvestigation of the singlet–triplet splitting in methylene , 1984 .

[2]  L. Firment,et al.  Summary Abstract: Adsorption and temperature programmed desorption of methanol on MoO3 powder and crystal surfaces , 1984 .

[3]  Trevor J. Sears,et al.  Far infrared laser magnetic resonance of singlet methylene: Singlet–triplet perturbations, singlet–triplet transitions, and the singlet–triplet splittinga) , 1983 .

[4]  P. Jensen,et al.  A refined potential surface for the X̃ 3B1 electronic state of methylene CH2 , 1983 .

[5]  J. Volta,et al.  Structure-sensitive catalytic oxidation: Alcohols on graphite-supported molybdenum trioxide , 1983 .

[6]  L. Firment,et al.  Stoichiometric and oxygen deficient MoO3(010) surfaces , 1983 .

[7]  R. Grasselli,et al.  Mechanism of nitrogen insertion in ammoxidation catalysis , 1983 .

[8]  H. Schaefer,et al.  Analytic second derivatives in restricted Hartree–Fock theory. A method for high‐spin open‐shell molecular wave functions , 1982 .

[9]  D. Neumark,et al.  Methylene singlet–triplet energy splitting by molecular beam photodissociation of ketene , 1982 .

[10]  W. Goddard,et al.  Olefin metathesis - a mechanistic study of high-valent Group VI catalysts , 1982 .

[11]  J. Tatibouet,et al.  A structure-sensitive oxidation reaction: Methanol on molybdenum trioxide catalysts , 1981 .

[12]  W. C. Lineberger,et al.  Laser photoelectron spectroscopy of CH2−, and the singlet–triplet splitting in methylene , 1981 .

[13]  P. Labbé,et al.  Positive halogen cryptate: complexation of iodine with [2.2.2]cryptand , 1980 .

[14]  W. Goddard,et al.  Mechanism of metathesis and epoxidation in chromium and molybdenum complexes containing methyl-oxo bonds , 1980 .

[15]  R. Schrock,et al.  Multiple metal-carbon bonds. 16. Tungsten-oxo alkylidene complexes as olefins metathesis catalysts and the crystal structure of W(O)(CHCMe3(PEt3)Cl2 , 1980 .

[16]  W. Goddard,et al.  Bivalent spectator oxo bonds in metathesis and epoxidation alkenes , 1980, Nature.

[17]  G. Whitesides,et al.  Thermal generation of bis(triethylphosphine)-3,3-dimethylplatinacyclobutane from dineopentylbis(triethylphosphine)platinum(II) , 1979 .

[18]  A. D. McLean,et al.  AB INITIO EFFECTIVE CORE POTENTIALS INCLUDING RELATIVISTIC EFFECTS. III. GROUND STATE AU2 CALCULATIONS , 1979 .

[19]  R. Zare,et al.  Experimental determination of the singlet-triplet splitting in methylene , 1978 .

[20]  W. R. Wadt,et al.  Ab initio studies of AuH, AuCl, HgH and HgCl2 using relativistic effective core potentials , 1978 .

[21]  W. Goddard,et al.  Methylene: ab initio vibronic analysis and reinterpretation of the spectroscopic and negative ion photoelectron experiments , 1978 .

[22]  I. Shavitt,et al.  Accurate ab initio calculations on the singlet--triplet separation in methylene , 1978 .

[23]  J. Ibers,et al.  Metallocyclobutanes. Preparation and structural characterization of the products of insertion of (ethylene)bis(triphenylphosphine)platinum into 1,1,2,2,-tetracyano-3-phenylcyclopropane and 1-carboethoxy-1,2,2-tricyano-trans-3-phenylcyclopropane , 1978 .

[24]  B. Roos,et al.  Methylene singlet-triplet separation. An ab initio configuration interaction study , 1977 .

[25]  W. Goddard,et al.  Ab initio studies on the singlet–triplet splitting of methylene (CH2) , 1977 .

[26]  Kester Wr,et al.  Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis. , 1977 .

[27]  T. C. Mcgill,et al.  Ab initioeffective potentials for silicon , 1977 .

[28]  F. Lahmani Reversibility of the pressure-induced intersystem crossing in methylene , 1976 .

[29]  J. Simons,et al.  Threshold energies for production of CH2(3B1) and CH2(1A1) from ketene photolysis. The CH2(3B1) ↔ CH2(1A1) energy splitting , 1976 .

[30]  R. Grubbs,et al.  Mechanism of the olefin metathesis reaction , 1975 .

[31]  T. J. Katz,et al.  Mechanism of the olefin metathesis reaction , 1975 .

[32]  W. Goddard,et al.  Ab initio effective potentials for use in molecular quantum mechanics , 1974 .

[33]  Richard R. Schrock,et al.  Alkylcarbene complex of tantalum by intramolecular .alpha.-hydrogen abstraction , 1974 .

[34]  H. Praliaud,et al.  Effect of oxygen on metathesis of cis-2-pentene by a binary catalyst system of W(CO)5P(C6H5)3 and (C2H5)AlCl2 , 1974 .

[35]  C. Bender,et al.  Singlet-triplet energy separation, Walsh-Mulliken diagrams, and singlet d-polarization effects in methylene , 1972 .

[36]  W. Goddard,et al.  Generalized valence bond wavefunctions for the low lying states of methylene , 1972 .

[37]  R. Phillips,et al.  Vibrational deactivation of singlet methylene , 1971 .

[38]  F. Trifiró The nature of the active component in a Fe2O3$z.sbnd;MoO3 catalyst *1II. Study of the variations occurring during high temperature treatment , 1971 .

[39]  G. Herzberg,et al.  On the Structure of CH2 in its Triplet Ground State , 1971 .

[40]  Par Jean‐Louis Hérisson,et al.  Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques , 1971 .

[41]  R. W. Carr,et al.  Chemical Evidence for a Small CH2(1A1)–CH2(3Σg−) Electronic Term Difference , 1970 .

[42]  E. Wasserman,et al.  EPR of CH2: a substiantially bent and partially rotating ground state triplet , 1970 .

[43]  C. Bender,et al.  New theoretical evidence for the nonlinearity of the triplet ground state of methylene , 1970 .

[44]  P. Wang,et al.  Electron Paramagnetic Resonance of Triplet CH2 , 1970 .

[45]  H. Tsuzuki,et al.  Thermolysin: kinetic study with oligopeptides. , 1970, European journal of biochemistry.

[46]  E. Wasserman,et al.  Electron paramagnetic resonance of CD2 and CHD. Isotope effects, motion, and geometry of methylene , 1970 .

[47]  J. F. Harrison,et al.  The electronic structure of methylene , 1969 .

[48]  M. Halberstadt,et al.  Insertion of methylene into alkanes , 1967 .

[49]  G. Herzberg,et al.  The spectrum and structure of singlet CH2 , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  G. Herzberg The Bakerian Lecture, The spectra and structures of free methyl and free methylene , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[51]  S. F. Boys,et al.  Quantum Variational Calculations for a Range of C H 2 Configurations , 1960 .

[52]  M. Krauss,et al.  Electronic Structure of CH2 and CH3 , 1960 .

[53]  G. Herzberg,et al.  Spectrum and Structure of the Free Methylene Radical , 1959, Nature.

[54]  L. Pauling The Nature Of The Chemical Bond , 1939 .