Highly Sensitive Multi-pass Cavity Enhanced Raman Spectroscopy with Novel Polarization Filtering for Quantitative Measurement of SF6 Decomposed Components in Gas-insulated Power Equipment

[1]  Wei Peng,et al.  Ultra-high sensitive photoacoustic gas detector based on differential multi-pass cell , 2022, Sensors and Actuators B: Chemical.

[2]  Weigen Chen,et al.  Dense-pattern multi-pass cavity based on spherical mirrors in a Z-shaped configuration for Raman gas sensing. , 2022, Optics letters.

[3]  Li-ping Zhu,et al.  Low-Temperature Monitoring of SF6 Decomposition Products Based on CeO2@MWCNTs Composite Sensor , 2022, Journal of Alloys and Compounds.

[4]  W. Jin,et al.  Heterodyne interferometric photothermal spectroscopy for gas detection in a hollow-core fiber , 2021 .

[5]  Hongtu Cheng,et al.  SF 6 decomposition and insulation condition monitoring of GIE: A review , 2021, High Voltage.

[6]  W. Jin,et al.  Phase-Modulation-Amplifying Hollow-Core Fiber Photothermal Interferometry for Ultrasensitive Gas Sensing , 2021, Journal of Lightwave Technology.

[7]  Kun Liu,et al.  Highly precise measurement of atmospheric N2O and CO using improved White cell and RF current perturbation , 2021, Sensors and Actuators B: Chemical.

[8]  Zhixian Zhang,et al.  Fiber-enhanced Raman spectroscopy for highly sensitive H2 and SO2 sensing with a hollow-core anti-resonant fiber. , 2021, Optics express.

[9]  M. Rong,et al.  Detection of decomposition products of SF6/air gas mixture by electron attachment mass spectrometry , 2021, High Voltage.

[10]  A. Kolomenskiǐ,et al.  A sensitive methane sensor of a ppt detection level using a mid-infrared interband cascade laser and a long-path multipass cell , 2021 .

[11]  M. Rong,et al.  Multicomponent SF6 decomposition product sensing with a gas-sensing microchip , 2021, Microsystems & nanoengineering.

[12]  A. Muller,et al.  Spontaneous Raman scattering at trace gas concentrations with a pressurized external multipass cavity , 2020 .

[13]  Hongpeng Wu,et al.  3D-Printed Miniature Fiber-Coupled Multi-pass Cell with Dense Spot Pattern for Ppb-level Methane Detection Using a Near-IR Diode Laser. , 2020, Analytical chemistry.

[14]  He Zhang,et al.  Corrigendum to “SWCNTs-based MEMS gas sensor array and its pattern recognition based on deep belief networks of gases detection in oil-immersed transformers” [Sens. Actuators B: Chem. 312 (2020) 127998] , 2020 .

[15]  Ju Tang,et al.  SF6 fault decomposition feature component extraction and triangle fault diagnosis method , 2020, IEEE Transactions on Dielectrics and Electrical Insulation.

[16]  Frank K. Tittel,et al.  Near-infrared methane sensor system using off-axis integrated cavity output spectroscopy with novel dual-input dual-output coupling scheme for mode noise suppression , 2020 .

[17]  Weigen Chen,et al.  Multigas Analysis by Cavity-Enhanced Raman Spectroscopy for Power Transformer Diagnosis. , 2020, Analytical chemistry.

[18]  W. Jin,et al.  Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber , 2020, Nature Communications.

[19]  Baoguo Sun,et al.  Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). , 2020, Food chemistry.

[20]  Weigen Chen,et al.  Cavity-enhanced Raman spectroscopy with optical feedback frequency-locking for gas sensing. , 2019, Optics express.

[21]  M. Hippler,et al.  Cavity-Enhanced Raman and Helmholtz Resonator Photoacoustic Spectroscopy to Monitor the Mixed Sugar Metabolism of E. coli , 2019, Analytical chemistry.

[22]  Sea-Fue Wang,et al.  In situ study of a composition of outlet gases from biogas fuelled Solid Oxide Fuel Cell performed by the Fourier Transform Infrared Spectroscopy , 2019, International Journal of Hydrogen Energy.

[23]  Juergen Popp,et al.  Fiber-Enhanced Raman Gas Spectroscopy for 18O-13C-Labeling Experiments. , 2019, Analytical chemistry.

[24]  Martin Asenov,et al.  Autonomous multi-species environmental gas sensing using drone-based Fourier-transform infrared spectroscopy. , 2019, Optics express.

[25]  Frank K. Tittel,et al.  Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser , 2019, Sensors and Actuators B: Chemical.

[26]  Xukun Yin,et al.  Highly sensitive photoacoustic multicomponent gas sensor for SF6 decomposition online monitoring. , 2019, Optics express.

[27]  Huadan Zheng,et al.  Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring , 2017, Nature Communications.

[28]  A. Muller,et al.  Isotopic gas analysis through Purcell cavity enhanced Raman scattering , 2016 .

[29]  Qiang Yao,et al.  Feature extraction of SF6 thermal decomposition characteristics to diagnose overheating fault , 2015 .

[30]  J. A. Silver,et al.  Improved multiple-pass Raman spectrometer. , 2011, Applied optics.

[31]  R. J. Van Brunt,et al.  Fundamental processes of SF/sub 6/ decomposition and oxidation in glow and corona discharges , 1990 .

[32]  F. Chu,et al.  SF6 Decomposition in Gas-Insulated Equipment , 1986, IEEE Transactions on Electrical Insulation.

[33]  C. Weitkamp,et al.  Two-mirror multipass absorption cell. , 1981, Applied optics.

[34]  B. Rubin,et al.  Vibrational Raman spectrum of SF6 , 1978 .

[35]  Herwig Kogelnik,et al.  Off-Axis Paths in Spherical Mirror Interferometers , 1964 .

[36]  J. Wood,et al.  Raman Spectra of Thionyl Fluoride and Sulfuryl Fluoride , 1955 .

[37]  A. Muller,et al.  Trace gas sensing using diode-pumped collinearly detected spontaneous Raman scattering enhanced by a multipass cell , 2019 .

[38]  Bin Chen,et al.  High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber , 2013 .