Stable neural control of uncertain multivariable systems

Tracking control of a class of non-linear, uncertain, multi-input, multiple-output systems is addressed in this paper. The control system architecture uses neural networks for function approximation, certainty equivalent control inputs to cancel plant dynamics and smoothed sliding mode control to insure that the trajectories remain bounded. Lyapunov analysis is used to derive equations for the sliding mode control, neural network training, and to show uniform ultimate boundedness of the closed-loop system. Stability analysis results are shown for single-input single-output and two-input two-output systems. Results are then extended to the more general multiple-input multiple-output case where the number of inputs is equal to the number of outputs. Simple simulation examples are used to illustrate control system performance. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  Nader Sadegh,et al.  A perceptron network for functional identification and control of nonlinear systems , 1993, IEEE Trans. Neural Networks.

[2]  Datta N. Godbole Control and coordination in uninhabited combat air vehicles , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[3]  Hassan K. Khalil,et al.  Adaptive control of a class of nonlinear discrete-time systems using neural networks , 1995, IEEE Trans. Autom. Control..

[4]  A. Isidori Nonlinear Control Systems , 1985 .

[5]  Anthony J. Calise,et al.  Nonlinear adaptive flight control using neural networks , 1998 .

[6]  Kevin M. Passino,et al.  Stable adaptive control using fuzzy systems and neural networks , 1996, IEEE Trans. Fuzzy Syst..

[7]  Marios M. Polycarpou,et al.  Stable adaptive neural control scheme for nonlinear systems , 1996, IEEE Trans. Autom. Control..

[8]  Masayoshi Tomizuka,et al.  Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form , 1997, Autom..

[10]  Judy A. Franklin,et al.  Historical perspective and state of the art in connectionist learning control , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[11]  M. Polycarpou,et al.  Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators , 1998 .

[12]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[13]  Donald McLean,et al.  Automatic Flight Control Systems , 1990 .

[14]  Anthony J. Calise,et al.  Nonlinear flight control using neural networks , 1994 .

[15]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[16]  M. Corless,et al.  A new class of stabilizing controllers for uncertain dynamical systems , 1982, 1982 21st IEEE Conference on Decision and Control.

[17]  Manolis A. Christodoulou,et al.  Adaptive control of unknown plants using dynamical neural networks , 1994, IEEE Trans. Syst. Man Cybern..

[18]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[19]  Jay A. Farrell,et al.  Stability and approximator convergence in nonparametric nonlinear adaptive control , 1998, IEEE Trans. Neural Networks.

[20]  M. Pachter,et al.  Challenges of autonomous control , 1998 .

[21]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[22]  M. Corless,et al.  Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems , 1981 .

[23]  Meir Pachter,et al.  On-line optimizing networks for reconfigurable control , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[24]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[25]  David G. Taylor,et al.  Adaptive Regulation of Nonlinear Systems with Unmodeled Dynamics , 1988, 1988 American Control Conference.

[26]  Visakan Kadirkamanathan,et al.  Dynamic structure neural networks for stable adaptive control of nonlinear systems , 1996, IEEE Trans. Neural Networks.

[27]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[28]  Marios M. Polycarpou,et al.  A Robust Adaptive Nonlinear Control Design , 1993, 1993 American Control Conference.

[29]  L. Praly,et al.  Adaptive nonlinear regulation: estimation from the Lyapunov equation , 1992 .

[30]  Frank L. Lewis,et al.  Feedback linearization using neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).