There is no Landauer Limit: Experimental tests of the Landauer principle

Power dissipation is one of the most important factors limiting the development of integrated circuits. This work will explore the limits of energy dissipation in computation and show that there is no “Landauer Limit” at kBT ln2 as long as information is preserved. Experimental data is presented that demonstrates a dissipation of 0.04 kBT, well below kBT ln2. Simulation results for adiabatically clocked reversible circuits are presented showing dramatic reductions of power dissipation.

[1]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[2]  P. M. Solomon,et al.  Power measurements of adiabatic circuits by thermoelectric technique , 1995, 1995 IEEE Symposium on Low Power Electronics. Digest of Technical Papers.

[3]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[4]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[5]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[6]  P. J. B. Koeck Quantization errors in averaged digitized data , 2001, Signal Process..

[7]  Saed G. Younis,et al.  Asymptotically zero energy computing using split-level charge recovery logic , 1994 .

[8]  John D. Norton Waiting for Landauer , 2010 .

[9]  Makoto Motoyoshi,et al.  Through-Silicon Via (TSV) , 2009, Proceedings of the IEEE.

[10]  Ralph K. Cavin,et al.  Energy barriers, demons, and minimum energy operation of electronic devices , 2005 .

[11]  David Blaauw,et al.  Near-Threshold Computing: Reclaiming Moore's Law Through Energy Efficient Integrated Circuits , 2010, Proceedings of the IEEE.

[12]  S. Bhave,et al.  The resonant body transistor. , 2010, Nano letters.

[13]  David Patterson The trouble with multi-core , 2010, IEEE Spectrum.

[14]  Karthikeyan Sankaralingam,et al.  Dark Silicon and the End of Multicore Scaling , 2012, IEEE Micro.

[15]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[16]  W. Porod,et al.  Dissipation in Computation , 1984 .

[17]  C. Lent,et al.  Experimental Test of Landauer's Principle at the Sub-kBT Level , 2012 .