Photoacoustic endoscopy (PAE) is a promising tool for the detection of atherosclerotic plaque. In this work, we propose a novel design of a side-viewing PAE probe based on a synthetic aperture focusing technique (SAFT) to enable high transverse resolution over large depth of focus (DOF) along the radial direction. A point-like ultrasonic detector is used to ensure a wide detection angle and thus a large synthetic aperture for SAFT. We first perform numerical simulation to optimize the PAE probe design, which involves the placement of the point-like detector and the diameter of a reflection rod mirror. Then, experiments are conducted based on the optimized probe design. High transverse resolution of 115–190 μm over large DOF of 3.5 mm along the radial direction is experimentally obtained. The SAFT-based PAE holds promise for endoscopic imaging with a high transverse resolution for both the surface and deep regions of tissue. © 2017 Optical Society of America OCIS codes: (170.3880) Medical and biological imaging; (170.5120) Photoacoustic imaging; (170.2150) Endoscopic imaging; (100.0100) Image processing. References and links 1. S. Tang, J. Chen, P. Samant, S. Kelly, and L. Xiang, “Transurethral photoacoustic endoscopy for prostate cancer: A simulation study,” IEEE Trans. Med. Imaging 35(7), 1780–1787 (2016). 2. J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012). 3. C. Chen, Y. Zhao, S. Yang, and D. Xing, “Mechanical characterization of intraluminal tissue with phase-resolved photoacoustic viscoelasticity endoscopy,” Biomed. Opt. Express 6(12), 4975–4980 (2015). 4. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007). 5. B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express 18(5), 4889–4897 (2001). 6. K. Jansen, A. F. Van Der Steen, H. M. van Beusekom, J.W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011). 7. X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PloS one 9(3), e92463 (2014). 8. J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015). 9. J.-M. Yang, K. Maslov, H.-C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009). 10. J.-M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012). 11. H. He, G. Wissmeyer, S.V. Ovsepian, A. Buehler and V. Ntziachristos, “Hybrid optical and acoustic resolution optoacoustic endoscopy,” Opt. Lett. 41(12), 2708–2710 (2016). 12. B. Dong, S. Chen, Z. Zhang, C. Sun, and H. F. Zhang, “Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications,” Opt. Lett. 39(15), 4372–4375 (2014). 13. C.-K. Liao, M.-L. Li, and P.-C. Li, “Optoacoustic imaging with synthetic aperture focusing and coherence weighting,” Opt. Lett. 29(21), 2506–2508 (2004). 14. M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006). Vol. 25, No. 17 | 21 Aug 2017 | OPTICS EXPRESS 20162 #301151 Journal © 2017 https://doi.org/10.1364/OE.25.020162 Received 30 Jun 2017; revised 6 Aug 2017; accepted 6 Aug 2017; published 10 Aug 2017 15. D. Cai, Z. Li, and S.-L. Chen, “Photoacoustic microscopy by scanning mirror-based synthetic aperture focusing technique,” Chin. Opt. Lett. 13(10), 101101 (2015). 16. M. O’Donnell and L. Thomas, “Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 366–380 (1992). 17. X. Chen, M. Li, Y. Li, Y. Wang, and D. Yu, “Synthetic aperture focusing for medical endoscopic ultrasonography,” J. X-Ray Sci. Technol. 19(1), 127–137 (2011). 18. C. Sheaff and S. Ashkenazi, “A fiber optic optoacoustic ultrasound sensor for photoacoustic endoscopy,” in Proceedings of IEEE Conference on Ultrasonics (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 2135–2138. 19. E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78990 (2011). 20. P. Morris, A. Hurrell, and P. Beard , “Development of a 50 MHz fabry-perot type fibre-optic hydrophone for the characterisation of medical ultrasound fields,” in Proceedings (Institute of Acoustics, St Albans, 2006), pp. 717–725. 21. G. Diebold, T. Sun, and M. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384 (1991). 22. S.-L. Chen, T. Ling, and L. J. Guo, “Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging,” J. Biomed. Opt. 16(5), 056001 (2011). 23. M. Xu, Y. Xu, and L. V.Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003). 24. D. T. Blackstock, Fundamentals of Physical Acoustics (John Wiley & Sons, 2000). 25. J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006). 26. T. J. Allen, E. Zhang, and P. C. Beard, “Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor,” Proc. SPIE 93230, 932301 (2015). 27. T. Ling, S.-L. Chen, and L. J. Guo, “High-sensitivity and wide-directivity ultrasound detection using high Q polymer micro-ring resonators,” Appl. Phys. Lett. 98(20), 204103 (2011). 28. C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014). 29. H. Andresen, S. I. Nikolov, and J. A. Jensen, “Synthetic aperture focusing for a single-element transducer undergoing helical motion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 935–943 (2011).
[1]
K.K. Shung,et al.
Development of a 35-MHz piezo-composite ultrasound array for medical imaging
,
2006,
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[2]
Edward Z. Zhang,et al.
Large-field-of-view laser-scanning OR-PAM using a fibre optic sensor
,
2015,
Photonics West - Biomedical Optics.
[3]
Lihong V. Wang,et al.
Optical-resolution photoacoustic endomicroscopy in vivo.
,
2015,
Biomedical optics express.
[4]
Da Xing,et al.
Mechanical characterization of intraluminal tissue with phase-resolved photoacoustic viscoelasticity endoscopy.
,
2015,
Biomedical optics express.
[5]
Biqin Dong,et al.
Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications.
,
2014,
Optics letters.
[6]
Tao Ling,et al.
Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging.
,
2011,
Journal of biomedical optics.
[7]
S. Emelianov,et al.
Intravascular photoacoustic imaging using an IVUS imaging catheter
,
2007,
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[8]
S. Emelianov,et al.
Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging
,
2010,
Optics express.
[9]
Tao Ling,et al.
High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators.
,
2011,
Applied physics letters.
[10]
Shai Ashkenazi,et al.
A fiber optic optoacoustic ultrasound sensor for photoacoustic endoscopy
,
2010,
2010 IEEE International Ultrasonics Symposium.
[11]
M. L. Li,et al.
Optoacoustic imaging with synthetic aperture focusing and coherence weighting.
,
2004,
Optics letters.
[12]
Lihong V. Wang,et al.
Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo
,
2012,
Nature Medicine.
[13]
Qifa Zhou,et al.
A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy.
,
2012,
Optics express.
[14]
Yi Wang,et al.
Synthetic aperture focusing for medical endoscopic ultrasonography.
,
2011,
Journal of X-ray science and technology.
[15]
Sun,et al.
Photoacoustic monopole radiation in one, two, and three dimensions.
,
1991,
Physical review letters.
[16]
Lihong V. Wang,et al.
Improved in vivo photoacoustic microscopy based on a virtual-detector concept.
,
2006,
Optics letters.
[17]
Gijs van Soest,et al.
Intravascular photoacoustic imaging of human coronary atherosclerosis
,
2011,
BiOS.
[18]
Lihong V. Wang,et al.
Photoacoustic endoscopy.
,
2009,
Optics letters.
[19]
Vasilis Ntziachristos,et al.
Hybrid optical and acoustic resolution optoacoustic endoscopy.
,
2016,
Optics letters.
[20]
Tao Ling,et al.
Ultrabroad Bandwidth and Highly Sensitive Optical Ultrasonic Detector for Photoacoustic Imaging
,
2014
.
[21]
P. Morris,et al.
Development of a 50mhz fabry-perot type fibre-optic hydrophone for the characterisation of medical ultrasound fields
,
2006
.
[22]
Edward Z. Zhang,et al.
A miniature all-optical photoacoustic imaging probe
,
2011,
BiOS.
[23]
M. O'Donnell,et al.
Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging
,
1992,
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[24]
Jian Chen,et al.
Transurethral Photoacoustic Endoscopy for Prostate Cancer: A Simulation Study
,
2016,
IEEE Transactions on Medical Imaging.
[25]
Liang Song,et al.
Intravascular Optical-Resolution Photoacoustic Tomography with a 1.1 mm Diameter Catheter
,
2014,
PloS one.
[26]
Minghua Xu,et al.
Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries
,
2003,
IEEE Transactions on Biomedical Engineering.