Optimising simulations for diphoton production at hadron colliders using amplitude neural networks

Machine learning technology has the potential to dramatically optimise event generation and simulations. We continue to investigate the use of neural networks to approximate matrix elements for high-multiplicity scattering processes. We focus on the case of loop-induced diphoton production through gluon fusion, and develop a realistic simulation method that can be applied to hadron collider observables. Neural networks are trained using the one-loop amplitudes implemented in the NJet C++ library, and interfaced to the Sherpa Monte Carlo event generator, where we perform a detailed study for 2 → 3 and 2 → 4 scattering problems. We also consider how the trained networks perform when varying the kinematic cuts effecting the phase space and the reliability of the neural network simulations.

[1]  Z. Kunszt,et al.  Three-jet cross sections to next-to-leading order , 1995, hep-ph/9512328.

[2]  Damian Podareanu,et al.  Event generation and statistical sampling for physics with deep generative models and a density information buffer , 2019, Nature Communications.

[3]  Ansgar Denner,et al.  J an 2 01 8 R E C O L A 2 REcursive Computation of One-Loop Amplitudes 2 ✩ Version 2 . 0 , 2018 .

[4]  Michelle P. Kuchera,et al.  Simulation of electron-proton scattering events by a Feature-Augmented and Transformed Generative Adversarial Network (FAT-GAN) , 2020, IJCAI.

[5]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[6]  A. Butter,et al.  Generative Networks for LHC Events , 2020, Artificial Intelligence for High Energy Physics.

[7]  Sana Ketabchi Haghighat,et al.  DijetGAN: a Generative-Adversarial Network approach for the simulation of QCD dijet events at the LHC , 2019, Journal of High Energy Physics.

[8]  J. Monk,et al.  Deep learning as a parton shower , 2018, Journal of High Energy Physics.

[9]  A. Mitov,et al.  Two-loop leading-colour QCD helicity amplitudes for two-photon plus jet production at the LHC , 2021, Journal of High Energy Physics.

[10]  S. Hoeche,et al.  Next-to-leading order γγ+2-jet production at the LHC , 2014, 1402.4127.

[11]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[12]  J. Latorre,et al.  Parton distributions for the LHC run II , 2014, 1410.8849.

[13]  M. Huber,et al.  A proposal for a standard interface between Monte Carlo tools and one-loop programs , 2010, Comput. Phys. Commun..

[14]  Maurizio Pierini,et al.  LHC analysis-specific datasets with Generative Adversarial Networks , 2019, ArXiv.

[15]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[16]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[17]  Bruce Mellado,et al.  The use of Generative Adversarial Networks to characterise new physics in multi-lepton final states at the LHC , 2021, ArXiv.

[18]  P. Ambrozewicz,et al.  AI-based Monte Carlo event generator for electron-proton scattering , 2020 .

[19]  D. Maitre,et al.  An Automated Implementation of On-shell Methods for One-Loop Amplitudes , 2008, 0803.4180.

[20]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  L. Tancredi,et al.  Two-loop leading colour QCD corrections to $$ q\overline{q} $$ → γγg and qg → γγq , 2021 .

[23]  Christina Gao,et al.  i- flow: High-dimensional integration and sampling with normalizing flows , 2020, Mach. Learn. Sci. Technol..

[24]  R. S. Thorne,et al.  Parton distributions for the LHC , 2007, 0901.0002.

[25]  Stefano Carrazza,et al.  Lund jet images from generative and cycle-consistent adversarial networks , 2019, ArXiv.

[26]  A. Guffanti,et al.  Next-to-leading order QCD corrections to di-photon production in association with up to three jets at the Large Hadron Collider , 2013, 1312.5927.

[27]  Andy Buckley,et al.  Xsec: the cross-section evaluation code , 2020, The European Physical Journal C.

[28]  S. Moretti,et al.  HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes) , 2001 .

[29]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[30]  Simon Badger,et al.  Using neural networks for efficient evaluation of high multiplicity scattering amplitudes , 2020 .

[31]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[32]  F. Bishara,et al.  Machine learning amplitudes for faster event generation , 2019, Physical Review D.

[33]  Tilman Plehn,et al.  How to GAN event subtraction , 2019 .

[34]  Matthew D. Klimek,et al.  Improved neural network Monte Carlo simulation , 2020, 2009.07819.

[35]  J. Latorre,et al.  Parton distributions from high-precision collider data , 2017, The European Physical Journal C.

[36]  B. Nachman,et al.  Neural resampler for Monte Carlo reweighting with preserved uncertainties , 2020, Physical Review D.

[37]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[38]  S. Lloyd,et al.  LHAPDF6: parton density access in the LHC precision era , 2014, The European Physical Journal C.

[39]  A. S. Mete,et al.  Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at ffiffi s p = 8 TeV with the ATLAS detector , 2017 .

[40]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[41]  SHiP Collaboration Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks , 2019, Journal of Instrumentation.

[42]  Thorsten Ohl,et al.  Vegas revisited : Adaptive Monte Carlo integration beyond factorization , 1998, hep-ph/9806432.

[43]  S. Borowka,et al.  Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence. , 2016, Physical review letters.

[44]  M. Kerner,et al.  NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers , 2017, 1703.09252.

[45]  M. Gigg,et al.  Herwig++ physics and manual , 2008, 0803.0883.

[46]  Tilman Plehn,et al.  How to GAN LHC events , 2019, SciPost Physics.

[47]  L. Tancredi,et al.  Two-Loop Helicity Amplitudes for Diphoton Plus Jet Production in Full Color , 2021, Physical Review Letters.

[48]  R. Ruiz de Austri,et al.  DeepXS: fast approximation of MSSM electroweak cross sections at NLO , 2018, The European Physical Journal C.

[49]  Enrico Bothmann,et al.  Reweighting a parton shower using a neural network: the final-state case , 2018, Journal of High Energy Physics.

[50]  Tim Stelzer,et al.  Automation of next-to-leading order computations in QCD: the FKS subtraction , 2009, 0908.4272.

[51]  Christina Gao,et al.  Event generation with normalizing flows , 2020 .

[52]  G. Luisoni,et al.  Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence. , 2018, Physical review letters.

[53]  Peter Uwer,et al.  Numerical evaluation of virtual corrections to multi-jet production in massless QCD , 2012, Comput. Phys. Commun..

[54]  S. D. Ellis,et al.  A New Monte Carlo Treatment of Multiparticle Phase Space at High-energies , 1986 .

[55]  Andy Buckley,et al.  Rivet user manual , 2010, Comput. Phys. Commun..

[56]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[57]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[58]  Johannes Bellm,et al.  Herwig 7.0/Herwig++ 3.0 release note , 2015, 1512.01178.

[59]  Benjamin Nachman,et al.  A Living Review of Machine Learning for Particle Physics , 2021, ArXiv.

[60]  L. Scyboz,et al.  Probing the trilinear Higgs boson coupling in di-Higgs production at NLO QCD including parton shower effects , 2019, Journal of High Energy Physics.

[61]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[62]  M. Czakon Tops from light quarks : Full mass dependence at two-loops in QCD , 2008, 0803.1400.

[63]  S. Höche,et al.  Ntuples for NLO events at hadron colliders , 2013, Comput. Phys. Commun..

[64]  A. De Freitas,et al.  Two-loop amplitudes for gluon fusion into two photons , 2001 .

[65]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[66]  A. Mitov,et al.  NNLO QCD corrections to diphoton production with an additional jet at the LHC , 2021, Journal of High Energy Physics.

[67]  S. Frixione,et al.  ISOLATED PHOTONS IN PERTURBATIVE QCD , 1998 .

[69]  Steffen Schumann,et al.  Event generation with Sherpa 2.2 , 2019, SciPost Physics.

[70]  G. Kasieczka,et al.  GANplifying event samples , 2020, SciPost Physics.

[71]  Luke de Oliveira,et al.  Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis , 2017, Computing and Software for Big Science.

[72]  Steffen Schumann,et al.  Exploring phase space with Neural Importance Sampling , 2020 .

[73]  Joshua Bendavid,et al.  Efficient Monte Carlo Integration Using Boosted Decision Trees and Generative Deep Neural Networks , 2017, 1707.00028.

[74]  Rob Verheyen,et al.  Phase space sampling and inference from weighted events with autoregressive flows , 2020, SciPost Physics.

[75]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[76]  Fred L. Drake,et al.  Python 3 Reference Manual , 2009 .

[77]  N. Greiner,et al.  Precise QCD predictions for the production of a photon pair in association with two jets. , 2013, Physical review letters.

[78]  M. Marcoli,et al.  Virtual QCD corrections to gluon-initiated diphoton plus jet production at hadron colliders , 2021, Journal of High Energy Physics.

[79]  K. Jarrod Millman,et al.  Array programming with NumPy , 2020, Nat..

[80]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[81]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[82]  N(N)LO event files: applications and prospects , 2016, 1607.06259.

[83]  Matthew D. Klimek,et al.  Neural network-based approach to phase space integration , 2018, SciPost Physics.

[84]  Michal Czakon,et al.  Helac-nlo , 2011, Comput. Phys. Commun..

[85]  L. Lonnblad,et al.  Robust Independent Validation of Experiment and Theory: Rivet version 3 , 2019 .

[86]  Gudrun Heinrich,et al.  Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs , 2013, Comput. Phys. Commun..

[87]  F. Siegert,et al.  Event generation with SHERPA 1.1 , 2008, 0811.4622.

[88]  E. Byckling,et al.  Particle Kinematics : (Chapters I-VI, X) , 1971 .

[89]  Tiziano Peraro,et al.  FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs , 2019, Journal of High Energy Physics.

[90]  Kosei Dohi,et al.  Variational Autoencoders for Jet Simulation , 2020, 2009.04842.

[91]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.