Improving performance of a microfluidic immunoassay using a finite element method modeling

TAMPERE UNIVERSITY OF TECHNOLOGY Master’s Degree Programme in Biotechnology VÄLIAHO, JARI: Improving Performance of a Microfluidic Immunoassay Using a Finite Element Method Modeling Master of Science Thesis, 63 pages November 2013 Major: Biomeasurements Examiner: Professor Pasi Kallio and PhD Lasse Välimaa (University of Turku)

[1]  K. Audus,et al.  Digital microfluidics. , 2012, Annual review of analytical chemistry.

[2]  제임스 스코트 크라우,et al.  Production of Antibodies , 1942, Nature.

[3]  P. Silberzan,et al.  Microfluidics for biotechnology , 2005 .

[4]  M. A. Kessler,et al.  Determination of copper at ng ml−1-levels based on quenching of the europium chelate luminescence , 1998 .

[5]  Claude F. Meares Bioconjugate Chemistry: Editorial , 1994 .

[6]  M. Rapp,et al.  Covalent bound sensing layers on surface acoustic wave (SAW) biosensors. , 2001, Biosensors & bioelectronics.

[7]  Tuomas Näreoja,et al.  Impact of surface defects and denaturation of capture surface proteins on nonspecific binding in immunoassays using antibody-coated polystyrene nanoparticle labels. , 2009, Journal of immunological methods.

[8]  E. Diamandis,et al.  Ultrasensitive bioanalytical assays using time-resolved fluorescence detection. , 1995, Pharmacology & therapeutics.

[9]  L. Fu,et al.  Microfluidic Mixing: A Review , 2011, International journal of molecular sciences.

[10]  Sally L McArthur,et al.  Towards proteomics-on-chip: the role of the surface. , 2011, Molecular bioSystems.

[11]  Karl Andersson,et al.  Avoiding false negative results in specificity analysis of protein–protein interactions , 2011, Journal of molecular recognition : JMR.

[12]  M. Grattarola,et al.  Micromechanical cantilever-based biosensors , 2001 .

[13]  Kimmo Paivasaari,et al.  Fabrication of large-area hole arrays using high-efficiency two-grating interference system and femtosecond laser ablation , 2011 .

[14]  Ulrich J Krull,et al.  Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. , 2010, Analytica chimica acta.

[15]  Piia von Lode,et al.  Point-of-care immunotesting: approaching the analytical performance of central laboratory methods. , 2005 .

[16]  Lasse Välimaa,et al.  Improved surface stability and biotin binding properties of streptavidin coating on polystyrene. , 2009, Colloids and surfaces. B, Biointerfaces.

[17]  G. Fermann,et al.  Point of care testing in the emergency department. , 2002, The Journal of emergency medicine.

[18]  Samuel K Sia,et al.  Commercialization of microfluidic point-of-care diagnostic devices. , 2012, Lab on a chip.

[19]  E. Diamandis,et al.  Immunoassays with time-resolved fluorescence spectroscopy: principles and applications. , 1988, Clinical biochemistry.

[20]  I. Hemmilä,et al.  Luminescent lanthanide chelates—a way to more sensitive diagnostic methods , 1995 .

[21]  James J. Miller,et al.  Interference in immunoassays: avoiding erroneous results , 2004 .

[22]  Á. Ríos,et al.  Miniaturization through lab-on-a-chip: utopia or reality for routine laboratories? A review. , 2012, Analytica chimica acta.

[23]  L J Kricka,et al.  Human anti-animal antibody interferences in immunological assays. , 1999, Clinical chemistry.

[24]  Gian Luca Morini,et al.  Pressure-Driven Single-Phase Liquid Flows , 2013 .

[25]  Masahiko Ogino,et al.  Enhancement of fluorescence intensity from an immunoassay chip using high-aspect-ratio nanopillars fabricated by nanoimprinting , 2008 .

[26]  Inger Vikholm-Lundin,et al.  Site-directed immobilisation of antibody fragments for detection of C-reactive protein. , 2006, Biosensors & bioelectronics.

[27]  T. Soukka,et al.  Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. , 2001, Clinical chemistry.

[28]  T. Soukka,et al.  Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle-antibody bioconjugates. , 2001, Analytical chemistry.

[29]  Tero Soukka,et al.  Europium(III)-chelates embedded in nanoparticles are protected from interfering compounds present in assay media. , 2007, Analytica chimica acta.

[30]  Peter B. Luppa,et al.  Point-of-care testing (POCT): Current techniques and future perspectives , 2011, TrAC Trends in Analytical Chemistry.

[31]  Pasi Kallio,et al.  The effects of laser welding on heterogeneous immunoassay performance in a microfluidic cartridge. , 2011, Biomicrofluidics.

[32]  J. D. Winefordner,et al.  Limit of detection. A closer look at the IUPAC definition , 1983 .

[33]  Daniel Irimia,et al.  Capillary Force Valves , 2009 .

[34]  Ali Kemal Yetisen,et al.  Paper-based microfluidic point-of-care diagnostic devices. , 2013, Lab on a chip.

[35]  C. Selby,et al.  Interference in Immunoassay , 1999, Annals of clinical biochemistry.

[36]  Ann E Rundell,et al.  Influence of biologically inspired nanometer surface roughness on antigen–antibody interactions for immunoassay–biosensor applications , 2006, International journal of nanomedicine.

[37]  S. Avrameas,et al.  Effect of temperature on the reactivities of polyreactive and monospecific monoclonal IgG antibodies. , 1997, Research in immunology.

[38]  Abdul Ghaaliq Lalkhen,et al.  Clinical tests: sensitivity and specificity , 2008 .