Carbon nanotubes improve the adhesion strength of a ceramic splat to the steel substrate

[1]  A. Keshri,et al.  Splat morphology of plasma sprayed aluminum oxide reinforced with carbon nanotubes: A comparison between experiments and simulation , 2011 .

[2]  P. Bandyopadhyay,et al.  Scratch induced damage in alumina splats deposited on bond coats , 2011 .

[3]  Sungho Jin,et al.  Carbon nanotubes: how strong is their bond with the substrate? , 2011, ACS nano.

[4]  A. Keshri,et al.  Comprehensive process maps to synthesize high density plasma sprayed aluminum oxide composite coatings with varying carbon nanotube content , 2010 .

[5]  S. Seal,et al.  Synthesis of aluminum oxide coating with carbon nanotube reinforcement produced by chemical vapor deposition for improved fracture and wear resistance , 2010 .

[6]  J. Michler,et al.  Fundamentals of adhesion of thermal spray coatings: Adhesion of single splats , 2009 .

[7]  Yao Chen,et al.  Multiscale wear of plasma-sprayed carbon-nanotube-reinforced aluminum oxide nanocomposite coating , 2008 .

[8]  K. Balani,et al.  Damping behavior of carbon nanotube reinforced aluminum oxide coatings by nanomechanical dynamic modulus mapping , 2008 .

[9]  K. Balani,et al.  Process Map for Plasma Sprayed Aluminum Oxide-Carbon Nanotube Nanocomposite Coatings , 2008 .

[10]  Wenzhi Li,et al.  In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating , 2008 .

[11]  Yao Chen,et al.  Analytical model to evaluate interface characteristics of carbon nanotube reinforced aluminum oxide nanocomposites , 2008 .

[12]  Takhee Lee,et al.  A Special Issue — Selected Peer-Reviewed Papers from 2006 International Conference on Nanoscience and Nanotechnology, Gwangju, Korea , 2007 .

[13]  S. R. Bakshi,et al.  Role of powder treatment and carbon nanotube dispersion in the fracture toughening of plasma-sprayed aluminum oxide-carbon nanotube nanocomposite. , 2007, Journal of nanoscience and nanotechnology.

[14]  S. Chandra,et al.  Predicting Splat Morphology in a Thermal Spray Process , 2007, International Thermal Spray Conference.

[15]  S. Chandra,et al.  Effect of substrate temperature on the properties of coatings and splats deposited by wire arc spraying , 2006 .

[16]  H. Liao,et al.  Effects of surface conditions on the flattening behavior of plasma sprayed Cu splats , 2006 .

[17]  Li Li,et al.  Particle characterization and splat formation of plasma sprayed zirconia , 2006 .

[18]  P. Fauchais,et al.  Knowledge concerning splat formation: An invited review , 2004 .

[19]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[20]  S. Sampath,et al.  Splat formation and microstructure development during plasma spraying: deposition temperature effects , 2001 .

[21]  Robert Vaßen,et al.  Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings , 2001 .

[22]  P. Fauchais,et al.  Splat formation and cooling of plasma-sprayed zirconia , 1997 .

[23]  C. Berndt,et al.  Measurement and analysis of adhesion strength for thermally sprayed coatings , 1994 .

[24]  I. Hutchings,et al.  Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying , 1993 .

[25]  A. Keshri Comprehensive Process Maps for Synthesizing High Density Aluminum Oxide-Carbon Nanotube Coatings by Plasma Spraying for Improved Mechanical and Wear Properties , 2010 .

[26]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .