Rb atomic absorption line reference for single Sr+ laser cooling systems

85Rb, 5s2S1/2(F”=2)→6p2P1/2(F’=2,3) absorption resonance with the 88Sr+, 5s2S1/2→5p2P1/2 transition is exploited to provide a simple, effective frequency reference for a laser cooling/fluorescence excitation source applied to single Sr+ ions. A modulation-free frequency stabilization system has been designed which uses the differential signal from two frequency-displaced beams traversing a Rb cell and which probe the Doppler-broadened Rb S–P lineshape at microwatt power levels. The method is applied to frequency lock a 422-nm frequency-doubled diode laser system that is used for excitation of a single 88Sr+ ion. Stable, long-term laser cooling and fluorescence are achieved using the frequency-stabilized 422-nm source resulting in observed ion confinement times without adjustment of over 8 h, together with an improvement in single-ion loading efficiency.