Twist-Angle-Dependent Ultrafast Charge Transfer in MoS2-Graphene van der Waals Heterostructures.

Vertically stacked transition metal dichalcogenide-graphene heterostructures provide a platform for novel optoelectronic applications with high photoresponse speeds. Photoinduced nonequilibrium carrier and lattice dynamics in such heterostructures underlie these applications but have not been understood. In particular, the dependence of these photoresponses on the twist angle, a key tuning parameter, remains elusive. Here, using ultrafast electron diffraction, we report the simultaneous visualization of charge transfer and electron-phonon coupling in MoS2-graphene heterostructures with different stacking configurations. We find that the charge transfer timescale from MoS2 to graphene varies strongly with twist angle, becoming faster for smaller twist angles, and show that the relaxation timescale is significantly shorter in a heterostructure as compared to a monolayer. These findings illustrate that twist angle constitutes an additional tuning knob for interlayer charge transfer in heterobilayers and deepen our understanding of fundamental photophysical processes in heterostructures, of importance for future applications in optoelectronics and light harvesting.

[1]  K. Paul,et al.  Hot carrier photovoltaics in van der Waals heterostructures , 2021, Nature Reviews Physics.

[2]  F. Caruso Nonequilibrium Lattice Dynamics in Monolayer MoS2. , 2021, The journal of physical chemistry letters.

[3]  A. Georges,et al.  Moiré heterostructures as a condensed-matter quantum simulator , 2020, Nature Physics.

[4]  M. Bonn,et al.  Long-lived charge separation following pump-wavelength–dependent ultrafast charge transfer in graphene/WS2 heterostructures , 2020, Science Advances.

[5]  W. Geng,et al.  Angle Dependence of Interlayer Coupling in Twisted Transition Metal Dichalcogenide Heterobilayers , 2021 .

[6]  Young Hee Lee,et al.  Decelerated Hot Carrier Cooling in Graphene via Non-Dissipative Carrier Injection from MoS2. , 2020, ACS nano.

[7]  Hao Wang,et al.  Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection , 2020, Nature Communications.

[8]  C. Robert,et al.  Filtering the photoluminescence spectra of atomically thin semiconductors with graphene , 2019, Nature Nanotechnology.

[9]  J. Robinson,et al.  Direct observation of minibands in a twisted graphene/WS2 bilayer , 2019, Science Advances.

[10]  S. D. Conte,et al.  Ultrafast Photophysics of 2D Semiconductors and Related Heterostructures , 2020 .

[11]  Yujie Li,et al.  Highly efficient hot electron harvesting from graphene before electron-hole thermalization , 2019, Science Advances.

[12]  S. Qin,et al.  Twist-angle modulation of exciton absorption in MoS2/graphene heterojunctions , 2019, Applied Physics Letters.

[13]  T. Heinz,et al.  Ultrafast dynamics in van der Waals heterostructures , 2018, Nature Nanotechnology.

[14]  Kezhi Zheng,et al.  Advances in highly doped upconversion nanoparticles , 2018, Nature Communications.

[15]  Libai Huang,et al.  Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures , 2018, Science Advances.

[16]  Hua Yu,et al.  Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle , 2017 .

[17]  P. Ajayan,et al.  Ultrafast non-radiative dynamics of atomically thin MoSe2 , 2017, Nature Communications.

[18]  R. Coffee,et al.  Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction , 2017, Structural dynamics.

[19]  S. Meng,et al.  Interlayer‐State‐Coupling Dependent Ultrafast Charge Transfer in MoS2/WS2 Bilayers , 2017, Advanced science.

[20]  Kenji Watanabe,et al.  Interlayer electron–phonon coupling in WSe2/hBN heterostructures , 2016, Nature Physics.

[21]  Aaron M. Jones,et al.  Unusual Exciton-Phonon Interactions at van der Waals Engineered Interfaces. , 2017, Nano letters.

[22]  Zefeng Chen,et al.  Erratum: Hybrid graphene tunneling photoconductor with interface engineering towards fast photoresponse and high responsivity , 2017, npj 2D Materials and Applications.

[23]  B. Jonker,et al.  Auger Recombination in Chemical Vapor Deposition-Grown Monolayer WS2. , 2016, The journal of physical chemistry letters.

[24]  M. Ulmschneider,et al.  Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide , 2016, Nature Communications.

[25]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[26]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[27]  A. Ouerghi,et al.  Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures. , 2016, Nano letters.

[28]  Signe S. Grønborg,et al.  Ultrafast Band Structure Control of a Two-Dimensional Heterostructure. , 2016, ACS nano.

[29]  A. Ferrari,et al.  High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors , 2015, ACS nano.

[30]  Kenji Watanabe,et al.  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[31]  E. Reed,et al.  Dynamic Structural Response and Deformations of Monolayer MoS2 Visualized by Femtosecond Electron Diffraction. , 2015, Nano letters.

[32]  Jinlan Wang,et al.  Electronic Structure of Twisted Bilayers of Graphene/MoS2 and MoS2/MoS2 , 2015 .

[33]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[34]  A. Wodtke,et al.  Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics , 2014, Science.

[35]  Wei Zhou,et al.  Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties , 2014, Nature Communications.

[36]  Qing Hua Wang,et al.  Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation. , 2014, ACS nano.

[37]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[38]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[39]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[40]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[41]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[42]  F. Xia,et al.  Ultrafast graphene photodetector. , 2009, Nature nanotechnology.