A mathematical model for photoreceptor interactions.

[1]  Karl Deisseroth,et al.  Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa , 2010, Science.

[2]  José-Alain Sahel,et al.  Rod-Derived Cone Viability Factor for Treating Blinding Diseases: From Clinic to Redox Signaling , 2010, Science Translational Medicine.

[3]  Donald T. Miller,et al.  Imaging outer segment renewal in living human cone photoreceptors. , 2010, Optics express.

[4]  K. Palczewski,et al.  Phagocytosis of retinal rod and cone photoreceptors. , 2010, Physiology.

[5]  Kelly Shintani,et al.  Review and update: current treatment trends for patients with retinitis pigmentosa. , 2009, Optometry.

[6]  D. Hicks,et al.  Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting. , 2009, Investigative ophthalmology & visual science.

[7]  K. Palczewski,et al.  Structure of cone photoreceptors , 2009, Progress in Retinal and Eye Research.

[8]  T. Léveillard,et al.  Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[9]  A. Hendrickson,et al.  Rod photoreceptor differentiation in fetal and infant human retina. , 2008, Experimental eye research.

[10]  B. Lorenz,et al.  Identification of novel mutations in X-linked retinitis pigmentosa families and implications for diagnostic testing , 2008, Molecular vision.

[11]  B. Shastry Evaluation of the common variants of the ABCA4 gene in families with Stargardt disease and autosomal recessive retinitis pigmentosa. , 2008, International journal of molecular medicine.

[12]  S. Daiger,et al.  Mutations in the TOPORS gene cause 1% of autosomal dominant retinitis pigmentosa , 2008, Molecular vision.

[13]  P. Koehl,et al.  Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential , 2007, BMC Molecular Biology.

[14]  M. Brai,et al.  Analysis of the human a-wave ERG component , 2006, Physiological measurement.

[15]  S. Ellner,et al.  Dynamic Models in Biology , 2006 .

[16]  J. Sahel Saving cone cells in hereditary rod diseases: a possible role for rod-derived cone viability factor (RdCVF) therapy. , 2005, Retina.

[17]  P. Campochiaro,et al.  Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa , 2005, Journal of cellular physiology.

[18]  L. Edelstein-Keshet Mathematical models in biology , 2005, Classics in applied mathematics.

[19]  T. Léveillard,et al.  Identification and characterization of rod-derived cone viability factor , 2004, Nature Genetics.

[20]  Howard C. Howland,et al.  Dynamics of two van der Pol oscillators coupled via a bath , 2004 .

[21]  A. Milam,et al.  Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. , 2003, Experimental eye research.

[22]  H. Kaplan,et al.  Photoreceptor transplantation in retinitis pigmentosa: short-term follow-up. , 2003, Ophthalmology.

[23]  David Williams,et al.  The reflectance of single cones in the living human eye. , 2002, Investigative ophthalmology & visual science.

[24]  G. Tosini,et al.  The mammalian retina as a clock , 2002, Cell and Tissue Research.

[25]  D. Papermaster The birth and death of photoreceptors: the Friedenwald Lecture. , 2002, Investigative ophthalmology & visual science.

[26]  H. Ripps Cell death in retinitis pigmentosa: gap junctions and the 'bystander' effect. , 2002, Experimental eye research.

[27]  T. Léveillard,et al.  Rod–Cone Interactions: Developmental and Clinical Significance , 2001, Progress in Retinal and Eye Research.

[28]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[29]  J. Phelan,et al.  A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. , 2000, Molecular vision.

[30]  Alain Muzet,et al.  VARIATION OF VISUAL DETECTION OVER THE 24-HOUR PERIOD IN HUMANS , 2000, Chronobiology international.

[31]  C. W. Oyster The human eye: structure and function , 1999, Nature medicine.

[32]  Bernd Krauskopf,et al.  Nonlinear Dynamics of Interacting Populations , 1998 .

[33]  Y. Hao,et al.  Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Lisman,et al.  Photoreceptor degeneration in vitamin A deprivation and retinitis pigmentosa: the equivalent light hypothesis. , 1993, Experimental eye research.

[35]  D. Bok Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. , 1985, Investigative ophthalmology & visual science.

[36]  D. Papermaster,et al.  Actin in the photoreceptor connecting cilium: immunocytochemical localization to the site of outer segment disk formation , 1984, The Journal of cell biology.

[37]  D. Anderson,et al.  Both rod and cone disc shedding are related to light onset in the cat. , 1983, Investigative ophthalmology & visual science.

[38]  D. Anderson,et al.  Rod and cone disc shedding in the rhesus monkey retina: a quantitative study. , 1980, Experimental eye research.

[39]  Don H. Anderson,et al.  Disc morphogenesis in vertebrate photoreceptors , 1980, Vision Research.

[40]  M. Lavail Circadian nature of rod outer segment disc shedding in the rat. , 1980, Investigative ophthalmology & visual science.

[41]  R. W. Young,et al.  Rhythmic daily shedding of outer-segment membranes by visual cells in the goldfish , 1978, The Journal of cell biology.

[42]  M. Lavail Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. , 1976, Science.

[43]  R. W. Young Visual cells and the concept of renewal. , 1976, Investigative ophthalmology & visual science.

[44]  D. Anderson,et al.  Disc shedding in rodlike and conelike photoreceptors of tree squirrels. , 1975, Science.

[45]  R. H. Steinberg,et al.  Phagocytosis by pigment epithelium of human retinal cones , 1974, Nature.

[46]  M. Lavail KINETICS OF ROD OUTER SEGMENT RENEWAL IN THE DEVELOPING MOUSE RETINA , 1973, The Journal of cell biology.

[47]  Richard W. Young,et al.  THE RENEWAL OF ROD AND CONE OUTER SEGMENTS IN THE RHESUS MONKEY , 1971, The Journal of cell biology.

[48]  Richard W. Young,et al.  PARTICIPATION OF THE RETINAL PIGMENT EPITHELIUM IN THE ROD OUTER SEGMENT RENEWAL PROCESS , 1969, The Journal of cell biology.

[49]  R. W. Young,et al.  A difference between rods and cones in the renewal of outer segment protein. , 1969, Investigative ophthalmology.

[50]  R. W. Young THE RENEWAL OF PHOTORECEPTOR CELL OUTER SEGMENTS , 1967, The Journal of cell biology.

[51]  J. Lem,et al.  Rhodopsin-mediated retinitis pigmentosa. , 2009, Progress in molecular biology and translational science.

[52]  T. Léveillard,et al.  Disease-associated variants of the rod-derived cone viability factor (RdCVF) in Leber congenital amaurosis. Rod-derived cone viability variants in LCA. , 2006, Advances in experimental medicine and biology.

[53]  M. M. Ballús,et al.  Photoreceptor transplantation in retinitis pigmentosa , 2003 .

[54]  A. Ringvold,et al.  Impact of the environment on the mammalian corneal epithelium. , 2003, Investigative ophthalmology & visual science.

[55]  Eduardo Fernández,et al.  Webvision: The Organization of the Retina and Visual System , 1995 .

[56]  G. Lewis,et al.  Recovery of photoreceptor outer segment length and analysis of membrane assembly rates in regenerating primate photoreceptor outer segments. , 1993, Investigative ophthalmology & visual science.

[57]  L. Sherwood Human Physiology : From Cells to Systems , 1989 .