AquaSat: A Data Set to Enable Remote Sensing of Water Quality for Inland Waters

[1]  Raymond M. Hozalski,et al.  Limitations on using CDOM as a proxy for DOC in temperate lakes. , 2018, Water research.

[2]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[3]  Carsten Brockmann,et al.  Diversity II water quality parameters from ENVISAT (2002–2012): a new global information source for lakes , 2018, Earth System Science Data.

[4]  E. Stanley,et al.  Optical water quality in rivers , 2008 .

[5]  H. Paerl,et al.  Light absorption by phytoplankton and chromophoric dissolved organic matter in the drainage basin and estuary of the Neuse River, North Carolina (U.S.A.) , 2005 .

[6]  Assefa M. Melesse,et al.  A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques , 2016, Sensors.

[7]  Regional nutrient trends in streams and rivers of the United States, 1993-2003. , 2009 .

[8]  David P. Roy,et al.  The global Landsat archive: Status, consolidation, and direction , 2016 .

[9]  J. Six,et al.  Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River , 2009 .

[10]  Igor Ogashawara,et al.  Optical types of inland and coastal waters , 2017 .

[11]  J. Pekel,et al.  High-resolution mapping of global surface water and its long-term changes , 2016, Nature.

[12]  R. Carlson A trophic state index for lakes1 , 1977 .

[13]  Lorraine Murphy,et al.  A Web-Based Decision Support System for Assessing Regional Water-Quality Conditions and Management Actions1 , 2011, Journal of the American Water Resources Association.

[14]  J. Borchardt,et al.  Suspended sediment observations from ERTS-1 , 1971 .

[15]  Cory P. McDonald,et al.  Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting , 2015, Proceedings of the National Academy of Sciences.

[16]  M. Bauer,et al.  A 20-year Landsat water clarity census of Minnesota's 10,000 lakes , 2008 .

[17]  John Rogan,et al.  Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery , 2011 .

[18]  Stephanie C. J. Palmer,et al.  Remote sensing of inland waters: Challenges, progress and future directions , 2015 .

[19]  D. Roy,et al.  Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods , 2012 .

[20]  L. Richardson,et al.  Remote Sensing of Algal Bloom DynamicsNew research fuses remote sensing of aquatic ecosystems with algal accessory pigment analysis , 1996 .

[21]  X. Calbet,et al.  Validation practices for satellite‐based Earth observation data across communities , 2017 .

[22]  E. Vermote,et al.  Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity , 2019, Remote Sensing of Environment.

[23]  Stefan Adriaensen,et al.  Atmospheric Correction Inter-comparison eXercise , 2018, Remote. Sens..

[24]  Samantha K. Oliver,et al.  Biases in lake water quality sampling and implications for macroscale research , 2019, Limnology and Oceanography.

[25]  Bryan A. Franz,et al.  Global Water Clarity: Continuing a Century-Long Monitoring , 2018 .

[26]  Ronald J. Holyer,et al.  Toward universal multispectral suspended sediment algorithms , 1978 .

[27]  Alex de Sherbinin,et al.  A global Water Quality Index and hot-deck imputation of missing data , 2012 .

[28]  Michael Rode,et al.  Sensors in the Stream: The High-Frequency Wave of the Present. , 2016, Environmental science & technology.

[29]  R. D. Doyle,et al.  Low-level addition of dissolved organic carbon increases basal ecosystem function in a boreal headwater stream , 2017 .

[30]  Tiit Kutser,et al.  Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing , 2004 .

[31]  T. Kutser,et al.  Telespectrometrical estimation of water transparency, chlorophyll-a and total phosphorus concentration of Lake Peipsi , 1995 .

[32]  Benjamin S. Baumer,et al.  Tidy data , 2022, Modern Data Science with R.

[33]  Pang-Ning Tan,et al.  Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse , 2015, GigaScience.

[34]  G. Kling,et al.  Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation , 2015 .

[35]  R. Bukata Retrospection and introspection on remote sensing of inland water quality: “Like Déjà Vu All Over Again” , 2013 .

[36]  W. W. Jones,et al.  LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes , 2017, GigaScience.

[37]  Lisamarie Windham-Myers,et al.  High-Resolution Remote Sensing of Water Quality in the San Francisco Bay-Delta Estuary. , 2016, Environmental science & technology.

[38]  T. Pavelsky,et al.  Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace‐Athabasca Delta, Canada , 2009 .

[39]  Stuart I. Feldman,et al.  Make — a program for maintaining computer programs , 1979, Softw. Pract. Exp..

[40]  J. Qi,et al.  Mapping inland lake water quality across the Lower Peninsula of Michigan using Landsat TM imagery , 2013 .

[41]  R. Striegl,et al.  Carbon export by rivers draining the conterminous United States , 2012 .

[42]  Denise M. Argue,et al.  Challenges with secondary use of multi-source water-quality data in the United States. , 2017, Water research.

[43]  Donna N. Myers,et al.  Progress and lessons learned from water-quality monitoring networks , 2017 .

[44]  G. Williams Sediment concentration versus water discharge during single hydrologic events in rivers , 1989 .

[45]  John L. Dwyer,et al.  Landsat: building a strong future , 2012 .

[46]  M. Lorenzen Use of chlorophyll-Secchi disk relationships , 1980 .

[47]  R. Davies‐Colley,et al.  Water quality trends in New Zealand rivers: 1989–2009 , 2014, Environmental Monitoring and Assessment.

[48]  F. R. Schiebe,et al.  REMOTE SENSING OF SUSPENDED SEDIMENTS IN SURFACE WATERS , 1976 .

[49]  D. Antoine,et al.  Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll , 1996 .

[50]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[51]  Marvin E. Bauer,et al.  Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments , 2011 .

[52]  G. Coccia,et al.  Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data‐Poor Regions , 2018, Water Resources Research.

[53]  C. Lorenzen,et al.  Spectra of Backscattered Light from the Sea Obtained from Aircraft as a Measure of Chlorophyll Concentration , 1970, Science.

[54]  Kenton Lee,et al.  The Spectral Response of the Landsat-8 Operational Land Imager , 2014, Remote. Sens..

[55]  J. Read,et al.  Water quality data for national‐scale aquatic research: The Water Quality Portal , 2017 .

[56]  C. Giardino,et al.  Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission , 2015 .

[57]  H. Gordon Atmospheric correction of ocean color imagery in the Earth Observing System era , 1997 .

[58]  Margaret A. Palmer,et al.  Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes , 2008 .

[59]  Maycira Costa,et al.  The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: Ground- and space-based evidence. , 2006, Journal of environmental management.

[60]  George A. Maul,et al.  On the Use of the Earth Resources Technology Satellite ( LANDSAT-1 ) in Optical Oceanography , 1975 .

[61]  A. V. Vecchia,et al.  Water-quality trends in the nation’s rivers and streams, 1972–2012—Data preparation, statistical methods, and trend results , 2017 .

[62]  J. Storey,et al.  LANDSAT 7 SCAN LINE CORRECTOR-OFF GAP-FILLED PRODUCT DEVELOPMENT , 2005 .

[63]  Robert M. Hirsch,et al.  User guide to Exploration and Graphics for RivEr Trends (EGRET) and dataRetrieval: R packages for hydrologic data , 2015 .

[64]  L. Prieur,et al.  Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains1 , 1981 .

[65]  S. Phinn,et al.  A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans , 2014 .

[66]  J. Syvitski,et al.  Sediment flux and the Anthropocene , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.