Parallel Minimum Cuts in O(m log2 n) Work and Low Depth

We present a randomized O(m log2 n) work, O(polylog n) depth parallel algorithm for minimum cut. This algorithm matches the work bounds of a recent sequential algorithm by Gawrychowski, Mozes, and Weimann [ICALP’20], and improves on the previously best parallel algorithm by Geissmann and Gianinazzi [SPAA’18], which performs O(m log4 n) work in O(polylog n) depth. Our algorithm makes use of three components that might be of independent interest. First, we design a parallel data structure that efficiently supports batched mixed queries and updates on trees. It generalizes and improves the work bounds of a previous data structure of Geissmann and Gianinazzi and is work efficient with respect to the best sequential algorithm. Second, we design a parallel algorithm for approximate minimum cut that improves on previous results by Karger and Motwani. We use this algorithm to give a work-efficient procedure to produce a tree packing, as in Karger’s sequential algorithm for minimum cuts. Last, we design an efficient parallel algorithm for solving the minimum 2-respecting cut problem.

[1]  Jason Li,et al.  Deterministic mincut in almost-linear time , 2021, STOC.

[2]  Guy E. Blelloch,et al.  Work-Efficient Batch-Incremental Minimum Spanning Trees with Applications to the Sliding-Window Model , 2020, SPAA.

[3]  Umut A. Acar,et al.  Parallel Batch-Dynamic Trees via Change Propagation , 2020, ESA.

[4]  S. Mozes,et al.  Minimum Cut in O(m log2n) Time , 2019, ArXiv.

[5]  Mikkel Thorup,et al.  Faster Algorithms for Edge Connectivity via Random 2-Out Contractions , 2019, SODA.

[6]  Bryce Sandlund,et al.  A Simple Algorithm for Minimum Cuts in Near-Linear Time , 2019, SWAT.

[7]  Jeremy T. Fineman,et al.  Optimal Parallel Algorithms in the Binary-Forking Model , 2019, SPAA.

[8]  Barbara Geissmann,et al.  Parallel Minimum Cuts in Near-linear Work and Low Depth , 2018, SPAA.

[9]  Martin Farach-Colton,et al.  Exact Sublinear Binomial Sampling , 2013, Algorithmica.

[10]  Fabian Kuhn,et al.  Distributed Minimum Cut Approximation , 2013, DISC.

[11]  Mikkel Thorup,et al.  Maintaining information in fully dynamic trees with top trees , 2003, TALG.

[12]  David R. Karger,et al.  Minimum cuts in near-linear time , 1998, JACM.

[13]  David R. Karger,et al.  A new approach to the minimum cut problem , 1996, JACM.

[14]  Richard Cole,et al.  Finding minimum spanning forests in logarithmic time and linear work using random sampling , 1996, SPAA '96.

[15]  G. Blelloch Programming parallel algorithms , 1996, CACM.

[16]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[17]  D. Karger,et al.  Random sampling in graph optimization problems , 1995 .

[18]  James B. Orlin,et al.  A Faster Algorithm for Finding the Minimum Cut in a Directed Graph , 1994, J. Algorithms.

[19]  R. Motwani,et al.  Derandomization through approximation: an NC algorithm for minimum cuts , 1994, STOC '94.

[20]  David R. Karger,et al.  Random sampling in cut, flow, and network design problems , 1994, STOC '94.

[21]  Ming-Yang Kao,et al.  Scan-First Search and Sparse Certificates: An Improved Parallel Algorithms for k-Vertex Connectivity , 1993, SIAM J. Comput..

[22]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[23]  Éva Tardos,et al.  Fast approximation algorithms for fractional packing and covering problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[24]  Harold N. Gabow,et al.  A matroid approach to finding edge connectivity and packing arborescences , 1991, STOC '91.

[25]  Sanguthevar Rajasekaran,et al.  Optimal and Sublogarithmic Time Randomized Parallel Sorting Algorithms , 1989, SIAM J. Comput..

[26]  Uzi Vishkin,et al.  On Finding Lowest Common Ancestors: Simplification and Parallelization , 1988, AWOC.

[27]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[28]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[29]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[30]  Guy E. Blelloch,et al.  An Experimental Analysis of Change Propagation in Dynamic Trees , 2005, ALENEX/ANALCO.

[31]  David R. Karger,et al.  Global min-cuts in RNC, and other ramifications of a simple min-out algorithm , 1993, SODA '93.

[32]  D. Matula A linear time 2 + ε approximation algorithm for edge connectivity , 1993, SODA 1993.

[33]  J. Reif,et al.  Parallel Tree Contraction Part 1: Fundamentals , 1989, Adv. Comput. Res..

[34]  S. Teng,et al.  Optimal Tree Contraction in the EREW Model , 1988 .

[35]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .