Parallel Minimum Cuts in O(m log2 n) Work and Low Depth
暂无分享,去创建一个
[1] Jason Li,et al. Deterministic mincut in almost-linear time , 2021, STOC.
[2] Guy E. Blelloch,et al. Work-Efficient Batch-Incremental Minimum Spanning Trees with Applications to the Sliding-Window Model , 2020, SPAA.
[3] Umut A. Acar,et al. Parallel Batch-Dynamic Trees via Change Propagation , 2020, ESA.
[4] S. Mozes,et al. Minimum Cut in O(m log2n) Time , 2019, ArXiv.
[5] Mikkel Thorup,et al. Faster Algorithms for Edge Connectivity via Random 2-Out Contractions , 2019, SODA.
[6] Bryce Sandlund,et al. A Simple Algorithm for Minimum Cuts in Near-Linear Time , 2019, SWAT.
[7] Jeremy T. Fineman,et al. Optimal Parallel Algorithms in the Binary-Forking Model , 2019, SPAA.
[8] Barbara Geissmann,et al. Parallel Minimum Cuts in Near-linear Work and Low Depth , 2018, SPAA.
[9] Martin Farach-Colton,et al. Exact Sublinear Binomial Sampling , 2013, Algorithmica.
[10] Fabian Kuhn,et al. Distributed Minimum Cut Approximation , 2013, DISC.
[11] Mikkel Thorup,et al. Maintaining information in fully dynamic trees with top trees , 2003, TALG.
[12] David R. Karger,et al. Minimum cuts in near-linear time , 1998, JACM.
[13] David R. Karger,et al. A new approach to the minimum cut problem , 1996, JACM.
[14] Richard Cole,et al. Finding minimum spanning forests in logarithmic time and linear work using random sampling , 1996, SPAA '96.
[15] G. Blelloch. Programming parallel algorithms , 1996, CACM.
[16] Philip N. Klein,et al. A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.
[17] D. Karger,et al. Random sampling in graph optimization problems , 1995 .
[18] James B. Orlin,et al. A Faster Algorithm for Finding the Minimum Cut in a Directed Graph , 1994, J. Algorithms.
[19] R. Motwani,et al. Derandomization through approximation: an NC algorithm for minimum cuts , 1994, STOC '94.
[20] David R. Karger,et al. Random sampling in cut, flow, and network design problems , 1994, STOC '94.
[21] Ming-Yang Kao,et al. Scan-First Search and Sparse Certificates: An Improved Parallel Algorithms for k-Vertex Connectivity , 1993, SIAM J. Comput..
[22] Toshihide Ibaraki,et al. Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..
[23] Éva Tardos,et al. Fast approximation algorithms for fractional packing and covering problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[24] Harold N. Gabow,et al. A matroid approach to finding edge connectivity and packing arborescences , 1991, STOC '91.
[25] Sanguthevar Rajasekaran,et al. Optimal and Sublogarithmic Time Randomized Parallel Sorting Algorithms , 1989, SIAM J. Comput..
[26] Uzi Vishkin,et al. On Finding Lowest Common Ancestors: Simplification and Parallelization , 1988, AWOC.
[27] Robert E. Tarjan,et al. Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..
[28] Robert E. Tarjan,et al. A data structure for dynamic trees , 1981, STOC '81.
[29] T. C. Hu,et al. Multi-Terminal Network Flows , 1961 .
[30] Guy E. Blelloch,et al. An Experimental Analysis of Change Propagation in Dynamic Trees , 2005, ALENEX/ANALCO.
[31] David R. Karger,et al. Global min-cuts in RNC, and other ramifications of a simple min-out algorithm , 1993, SODA '93.
[32] D. Matula. A linear time 2 + ε approximation algorithm for edge connectivity , 1993, SODA 1993.
[33] J. Reif,et al. Parallel Tree Contraction Part 1: Fundamentals , 1989, Adv. Comput. Res..
[34] S. Teng,et al. Optimal Tree Contraction in the EREW Model , 1988 .
[35] C. Nash-Williams. Edge-disjoint spanning trees of finite graphs , 1961 .