Spectral Classification of Quasars in the Sloan Digital Sky Survey: Eigenspectra, Redshift, and Luminosity Effects

We study 16,707 quasar spectra from the Sloan Digital Sky Survey (SDSS) (an early version of the First Data Release; DR1) using the Karhunen-Loeve transform (or principal components analysis). The redshifts of these quasars range from 0.08 to 5.41, the i-band absolute magnitudes from -30 to -22, and the resulting rest-frame wavelengths from 900 to 8000 A. The quasar eigenspectra of the full catalog reveal the following: first order—the mean spectrum; second order—a host-galaxy component; third order—the UV-optical continuum slope; fourth order—the correlations of Balmer emission lines. These four eigenspectra account for 82% of the total sample variance. Broad absorption features are found not to be confined in one particular order but to span a number of higher orders. We find that the spectral classification of quasars is redshift and luminosity dependent; as such there does not exist a compact set (i.e., less than ≈10 modes) of eigenspectra (covering 900–8000 A) that can describe most variations (i.e., greater than ≈95%) of the entire catalog. We therefore construct several sets of eigenspectra in different redshift and luminosity bins. From these eigenspectra we find that quasar spectra can be classified (by the first two eigenspectra) into a sequence that is defined by a simple progression in the steepness of the slope of the continuum. We also find a dependence on redshift and luminosity in the eigencoefficients. The dominant redshift effect is a result of the evolution of the blended Fe II emission (optical) and the Balmer continuum (the "small bump," λrest ≈ 2000–4000 A). A luminosity dependence is also present in the eigencoefficients and is related to the Baldwin effect—the decrease of the equivalent width of an emission line with luminosity, which is detected in Lyα, Si IV+O IV], C IV, He II, C III] and Mg II, while the effect in N V seems to be redshift dependent. If we restrict ourselves to the rest-wavelength regions 1150–2000 A and 4000–5500 A, the eigenspectra constructed from the wavelength-selected SDSS spectra are found to agree with the principal components by Francis et al. and the well-known "Eigenvector-1" of Boroson & Green, respectively. ASCII formatted tables of the eigenspectra are available.

[1]  E. Merzbacher Quantum mechanics , 1961 .

[2]  J. Baldwin Luminosity Indicators in the Spectra of Quasi-Stellar Objects , 1977 .

[3]  M. Malkan,et al.  The ultraviolet excess of Seyfert 1 galaxies and quasars. , 1982 .

[4]  Richard F. Green,et al.  Quasar evolution derived from the Palomar bright quasar survey and other complete quasar surveys. , 1983 .

[5]  H. Netzer,et al.  Broad emission features in QSOs and active galactic nuclei. I: New calculations of Fe II line strengths , 1983 .

[6]  P. Davies Quantum Mechanics, Second edition , 1994 .

[7]  Multivariate analysis of elliptical galaxies , 1984 .

[8]  H. Netzer,et al.  Broad emission features in QSOs and active galactic nuclei. II - New observations and theory of Fe II and H I emission , 1985 .

[9]  F. Murtagh,et al.  Multivariate Data Analysis , 1986 .

[10]  C. Steidel,et al.  Emission-line and continuum properties of 92 bright QSOs : luminosity dependence and differences between radio-selected and optically selected samples , 1991 .

[11]  Frederic H. Chaffee,et al.  An objective classification scheme for QSO spectra , 1992 .

[12]  D. Tytler,et al.  Systematic QSO Emission-Line Velocity Shifts and New Unbiased Redshifts , 1992 .

[13]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[14]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[15]  Wei Zheng,et al.  Does a Luminosity-dependent Continuum Shape Cause the Baldwin Effect? , 1993 .

[16]  N. Grevesse,et al.  In: Origin and Evolution of the elements , 1993 .

[17]  R. Green,et al.  Luminosity effects and the emission-line properties of quasars with 0 less than z less than 3.8 , 1994 .

[18]  J. Bahcall,et al.  The Ultraviolet Emission Properties of 13 Quasars , 1995 .

[19]  Frederic H. Chaffee,et al.  The Large Bright Quasar Survey.VI.Quasar Catalog and Survey Parameters , 1995 .

[20]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[21]  A. Szalay,et al.  Spectral classification of galaxies: An Orthogonal approach , 1994, astro-ph/9411044.

[22]  John N. Bahcall,et al.  Hubble Space Telescope Images of a Sample of 20 Nearby Luminous Quasars , 1996, astro-ph/9611163.

[23]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[24]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[25]  ScienceDirect New astronomy reviews , 1998 .

[26]  T. D. Matteo,et al.  Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment , 2000 .

[27]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[28]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[29]  G. Hill,et al.  Lack of Iron Abundance Evolution in High-Redshift QSOs , 1999 .

[30]  J. Dunlop,et al.  A COMPARATIVE HST IMAGING STUDY OF THE HOST GALAXIES OF RADIO-QUIET QUASARS, RADIO-LOUD QUASARS AND RADIO GALAXIES - I , 1998, astro-ph/9809030.

[31]  Elemental Abundances in Quasistellar Objects: Star Formation and Galactic Nuclear Evolution at High Redshifts , 1999, astro-ph/9904223.

[32]  A. Szalay,et al.  A Robust Classification of Galaxy Spectra: Dealing with Noisy and Incomplete Data , 1999, astro-ph/9901300.

[33]  Hβ line width and the UV–X-ray spectra of luminous AGN , 2000, astro-ph/0005146.

[34]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[35]  Astrophysics,et al.  [O II] Emission, Eigenvector 1, and Orientation in Radio-quiet Quasars , 2000, astro-ph/0005385.

[36]  Andrew J. Connolly,et al.  The First Hour of Extragalactic Data of the Sloan Digital Sky Survey Spectroscopic Commissioning: The Coma Cluster , 2000, astro-ph/0010470.

[37]  P. Marziani,et al.  Phenomenology of Broad Emission Lines in Active Galactic Nuclei , 2000 .

[38]  J. Dunlop,et al.  Two-dimensional modelling of optical Hubble Space Telescope and infrared tip-tilt images of quasar host galaxies , 1999, astro-ph/9912044.

[39]  P. Green,et al.  Quasar Evolution and the Baldwin Effect in the Large Bright Quasar Survey , 2001, astro-ph/0104029.

[40]  U. Florida,et al.  A Search for Signatures of Quasar Evolution: Comparison of the Shapes of the Rest-Frame Optical/Ultraviolet Continua of Quasars at z > 3 and z ~ 0.1* , 2001, astro-ph/0105255.

[41]  The ages of quasar host galaxies , 2000, astro-ph/0002020.

[42]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[43]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[44]  F. Miller Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001 .

[45]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[46]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Quasar Catalog. I. Early Data Release , 2001, astro-ph/0110629.

[47]  M. SubbaRao,et al.  Broad Emission-Line Shifts in Quasars: An Orientation Measure for Radio-Quiet Quasars? , 2002, astro-ph/0204162.

[48]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[49]  Unusual broad absorption line quasars from the Sloan Digital Sky Survey , 2002, astro-ph/0203252.

[50]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[51]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[52]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[53]  R. Nichol,et al.  The Sloan Digital Sky Survey Quasar Catalog. II. First Data Release , 2003, astro-ph/0308443.

[54]  The Baldwin effect and black hole accretion: A spectral principal component analysis of a complete quasar sample , 2002, astro-ph/0211641.

[55]  A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Early Data Release , 2003, astro-ph/0301019.

[56]  R. Nichol,et al.  Distributions of Galaxy Spectral Types in the Sloan Digital Sky Survey , 2004, astro-ph/0407061.