Indications for a North Atlantic ocean circulation regime shift at the onset of the Little Ice Age

[1]  Michael Small,et al.  Long-term changes in the north-south asymmetry of solar activity: a nonlinear dynamics characterization using visibility graphs , 2014 .

[2]  Alejandro Ramirez-Rojas,et al.  Relationship between the Frequency Magnitude Distribution and the Visibility Graph in the Synthetic Seismicity Generated by a Simple Stick-Slip System with Asperities , 2014, PloS one.

[3]  J. Mignot,et al.  Labrador current variability over the last 2000 years , 2014 .

[4]  Luc Perreault,et al.  Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America , 2014, Proceedings of the National Academy of Sciences.

[5]  I. Yashayaev,et al.  Surface changes in the eastern Labrador Sea around the onset of the Little Ice Age , 2014 .

[6]  J. Andrews,et al.  Multidecadal to millennial marine climate oscillations across the Denmark Strait (~ 66° N) over the last 2000 cal yr BP , 2014 .

[7]  Alejandro Ramírez-Rojas,et al.  Investigating the time dynamics of seismicity by using the visibility graph approach: Application to seismicity of Mexican subduction zone , 2013 .

[8]  J. Jungclaus,et al.  Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium , 2013 .

[9]  L. Guzmán-Vargas,et al.  Earthquake magnitude time series: scaling behavior of visibility networks , 2013 .

[10]  Michael Small,et al.  Complex network approach to characterize the statistical features of the sunspot series , 2013, 1307.6280.

[11]  Andrei P. Sokolov,et al.  Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity , 2013 .

[12]  N. Graham,et al.  Continental-scale temperature variability during the past two millennia , 2013 .

[13]  Jürgen Kurths,et al.  Advanced functional network analysis in the geosciences: The pyunicorn package , 2013 .

[14]  Michael Schulz,et al.  Information from paleoclimate archives , 2013 .

[15]  Jurgen Kurths,et al.  Testing time series irreversibility using complex network methods , 2012, 1211.1162.

[16]  G. Feulner,et al.  A volcanically triggered regime shift in the subpolar North Atlantic Ocean as a possible origin of the Little Ice Age , 2012 .

[17]  Zu-Guo Yu,et al.  Multifractal analysis of solar flare indices and their horizontal visibility graphs , 2012 .

[18]  C. Schleussner,et al.  Enhanced Atlantic subpolar gyre variability through baroclinic threshold in a coarse resolution model , 2012 .

[19]  Luciano Telesca,et al.  Visibility graph analysis of wind speed records measured in central Argentina , 2012 .

[20]  J. Guiot,et al.  Mechanisms for European summer temperature response to solar forcing over the last millennium , 2012 .

[21]  Luciano Telesca,et al.  Visibility graph approach to the analysis of ocean tidal records , 2012 .

[22]  E. Zorita,et al.  Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium , 2012 .

[23]  Fred Godtliebsen,et al.  Multicentennial Variability of the Sea Surface Temperature Gradient across the Subpolar North Atlantic over the Last 2.8 kyr , 2012 .

[24]  T. Stocker,et al.  Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction , 2012 .

[25]  Jonathan F. Donges,et al.  Visibility graph analysis of geophysical time series: Potentials and possible pitfalls , 2012, Acta Geophysica.

[26]  T. Stocker,et al.  Is the Atlantic subpolar gyre bistable in comprehensive coupled climate models? , 2012, Climate Dynamics.

[27]  V. Trouet,et al.  North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last Millennium: Reconciling contradictory proxy records of NAO variability , 2012 .

[28]  Luciano Telesca,et al.  Analysis of seismic sequences by using the method of visibility graph , 2012 .

[29]  M. Holland,et al.  Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea‐ice/ocean feedbacks , 2012 .

[30]  H. Goosse,et al.  The role of forcing and internal dynamics in explaining the “Medieval Climate Anomaly” , 2011, Climate Dynamics.

[31]  J. Parrondo,et al.  Time series irreversibility: a visibility graph approach , 2011, 1108.1691.

[32]  C. Timmreck,et al.  Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions , 2012, Climate Dynamics.

[33]  M. Latif,et al.  A multimodel comparison of centennial Atlantic meridional overturning circulation variability , 2012, Climate Dynamics.

[34]  J. Kay,et al.  The Arctic’s rapidly shrinking sea ice cover: a research synthesis , 2012, Climatic Change.

[35]  Jürgen Kurths,et al.  Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution , 2011, Proceedings of the National Academy of Sciences.

[36]  M. Holland,et al.  Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism , 2011 .

[37]  L. Thompson,et al.  Reconstructed changes in Arctic sea ice over the past 1,450 years , 2011, Nature.

[38]  Norbert Marwan,et al.  Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis , 2011 .

[39]  J. Kurths,et al.  Comparison of correlation analysis techniques for irregularly sampled time series , 2011 .

[40]  F. Godtliebsen,et al.  Holocene climate variability of the Norwegian Atlantic Current during high and low solar insolation forcing , 2011 .

[41]  H. Wanner,et al.  2500 Years of European Climate Variability and Human Susceptibility , 2011, Science.

[42]  Caspar M. Ammann,et al.  Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0) , 2011 .

[43]  Michael Small,et al.  Recurrence-based time series analysis by means of complex network methods , 2010, Int. J. Bifurc. Chaos.

[44]  Helge Drange,et al.  External forcing as a metronome for Atlantic multidecadal variability , 2010 .

[45]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[46]  Wei-Xing Zhou,et al.  Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence , 2009, 0905.1831.

[47]  G. Faluvegi,et al.  Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly , 2009, Science.

[48]  B. Luque,et al.  Horizontal visibility graphs: exact results for random time series. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  C. Fröhlich,et al.  Total solar irradiance during the Holocene , 2009 .

[50]  Emily A. Fogarty,et al.  Visibility network of United States hurricanes , 2009 .

[51]  M. Latif,et al.  Barents Sea inflow shutdown: A new mechanism for rapid climate changes , 2009 .

[52]  L. Mysak,et al.  Sensitivity of sea ice to wind-stress and radiative forcing since 1500: a model study of the Little Ice Age and beyond , 2009 .

[53]  N. Graham,et al.  Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly , 2009, Science.

[54]  J. C. Nuño,et al.  The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion , 2009, 0901.0888.

[55]  Lucas Lacasa,et al.  From time series to complex networks: The visibility graph , 2008, Proceedings of the National Academy of Sciences.

[56]  Andreas Born,et al.  Bistability of the Atlantic subpolar gyre in a coarse‐resolution climate model , 2007 .

[57]  Eduardo Zorita,et al.  European climate response to tropical volcanic eruptions over the last half millennium , 2007 .

[58]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[59]  A. Knoll The " Little Ice Age " : Northern Hemisphere Average Observations and Model Calculations , 2007 .

[60]  Stefano Schiavon,et al.  Climate Change 2007: The Physical Science Basis. , 2007 .

[61]  M. Schulz,et al.  Low-frequency oscillations of the Atlantic Ocean meridional overturning circulation in a coupled climate model , 2006 .

[62]  Andrei P. Sokolov,et al.  Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes , 2006 .

[63]  S. Rahmstorf,et al.  The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions , 2005 .

[64]  Cecilie Mauritzen,et al.  Dilution of the Northern North Atlantic Ocean in Recent Decades , 2005, Science.

[65]  Andrei P. Sokolov,et al.  A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration , 2005 .

[66]  Los AlamOs Nallon Testing for nonlinearity in time series: the method of surrogate data — Source link , 2005 .

[67]  P. Mayewski,et al.  Holocene climate variability , 2004, Quaternary Research.

[68]  U. Cubasch,et al.  Climate evolution in the last five centuries simulated by an atmosphere-ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum , 2004 .

[69]  J. Andrews,et al.  Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: Implications for the Holocene climate variability , 2004 .

[70]  Steve Juggins,et al.  Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages , 1993, Hydrobiologia.

[71]  M. Mann Little Ice Age , 2002 .

[72]  Crowley,et al.  Atmospheric science: Methane rises from wetlands , 2011, Nature.

[73]  Victor Brovkin,et al.  CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate , 2000 .

[74]  M. Maqueda,et al.  Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics , 1997 .

[75]  A. J. Lawrance,et al.  Directionality and Reversibility in Time Series , 1991 .