Two-loop matching of the chromo-magnetic dipole operator with the gradient flow

The chromo-magnetic dipole operator is expressed in terms of operators at finite flow time in the gradient-flow formalism. The matching coefficients are evaluated through next-to-next-to-leading order QCD.

[1]  R. Harlander,et al.  Effective electroweak Hamiltonian in the gradient-flow formalism , 2022, Physical Review D.

[2]  R. Harlander The gradient flow at higher orders in perturbation theory , 2021, Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021).

[3]  P. Stoffer,et al.  One-loop matching for quark dipole operators in a gradient-flow scheme , 2021, Journal of High Energy Physics.

[4]  A. Shindler Flavor-diagonal CP violation: the electric dipole moment , 2021, The European Physical Journal A.

[5]  T. Neumann,et al.  Hadronic vacuum polarization using gradient flow , 2020, Journal of High Energy Physics.

[6]  C. Monahan,et al.  Short flow-time coefficients of CP -violating operators , 2020, 2005.04199.

[7]  R. V. Harlander,et al.  FeynGame , 2020, 2003.00896.

[8]  T. Neumann,et al.  Results and techniques for higher order calculations within the gradient-flow formalism , 2019, Journal of High Energy Physics.

[9]  T. Luu,et al.  Towards a determination of the nucleon EDM from the quark chromo-EDM operator with the gradient flow , 2018, Proceedings of The 36th Annual International Symposium on Lattice Field Theory — PoS(LATTICE2018).

[10]  T. Luu,et al.  Improvements to Nucleon Matrix Elements within a θ Vacuum from Lattice QCD , 2018, Proceedings of The 36th Annual International Symposium on Lattice Field Theory — PoS(LATTICE2018).

[11]  R. Harlander,et al.  The two-loop energy–momentum tensor within the gradient-flow formalism , 2018, The European Physical Journal C.

[12]  T. Luu,et al.  Electric Dipole Moment Results from lattice QCD , 2017, 1711.04730.

[13]  Tanmoy Bhattacharya,et al.  Dimension-5 CP -odd operators: QCD mixing and renormalization , 2015, 1502.07325.

[14]  T. Luu,et al.  Beyond-the-Standard-Model matrix elements with the gradient flow , 2014, 1409.2735.

[15]  M. Luscher Chiral symmetry and the Yang--Mills gradient flow , 2013, 1302.5246.

[16]  Martin Lüscher,et al.  Perturbative analysis of the gradient flow in non-abelian gauge theories , 2011, 1101.0963.

[17]  M. Luscher Properties and uses of the Wilson flow in lattice QCD , 2010, 1006.4518.

[18]  U. Haisch,et al.  Three-loop mixing of dipole operators. , 2005, Physical review letters.

[19]  G. D’Ambrosio,et al.  Direct CP violation in K→3π decays induced by SUSY chromomagnetic penguins , 1999, hep-ph/9911522.

[20]  Alan D. Martin,et al.  Review of Particle Physics , 2000, Physical Review D.

[21]  Huet,et al.  Electroweak baryogenesis and standard model CP violation. , 1994, Physical review. D, Particles and fields.

[22]  M. B. Gavela,et al.  Standard Model CP-violation and Baryon asymmetry , 1993, hep-ph/9312215.

[23]  F. Tkachov,et al.  THE ALGORITHM FOR OPE COEFFICIENT FUNCTIONS IN THE MS SCHEME , 1983 .

[24]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[25]  F. Tkachov A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .

[26]  A. Sakharov Violation of Cp-Invariance C-Asymmetry and Baryon Asymmetry of the Universe , 1998 .

[27]  L. Okun VIOLATION OF CP INVARIANCE. , 1984 .