Hypervelocity Impact Induced Disturbances on Composite Sandwich Panel Spacecraft Structures

The next generation of European scientific satellites will carry extremely sensitive measurement devices that require platform stability orders of magnitude higher than current missions. It is considered that the meteoroid and space debris (M/SD) environm

[1]  David J. Gardner,et al.  Hypervelocity impact on spacecraft carbon fibre reinforced plastic/aluminium honeycomb , 1997 .

[2]  Wallace E. Johnson,et al.  History and application of hydrocodes in hypervelocity impact , 1987 .

[3]  Stephen R Hallett,et al.  Prediction of impact damage in composite plates , 2000 .

[4]  Mark E. McNelis,et al.  Recent advances in vibroacoustics , 2002 .

[5]  Haimin Yao,et al.  Journal of the Mechanics and Physics of Solids , 2014 .

[6]  E. Christiansen Whipple shield sizing equations , 1991 .

[7]  Richard A. Clegg,et al.  Hypervelocity impact damage prediction in composites: Part I—material model and characterisation , 2006 .

[8]  Charles E. Anderson,et al.  An overview of the theory of hydrocodes , 1987 .

[9]  Y. Kwon,et al.  Micromechanics model for damage and failure analyses of laminated fibrous composites , 1995 .

[10]  Qing-Qing Ni,et al.  The ultrasonic wave propagation in composite material and its characteristic evaluation , 2006 .

[11]  Emma A. Taylor,et al.  Hypervelocity impact on carbon fibre reinforced plastic / aluminium honeycomb: Comparison with whipple bumper shields , 1999 .

[12]  H. Klinkrad Space Debris: Models and Risk Analysis , 2006 .

[13]  Timothy G. Trucano,et al.  Debris cloud dynamics , 1990 .

[14]  P. D. Soden,et al.  A COMPARISON OF THE PREDICTIVE CAPABILITIES OF CURRENT FAILURE THEORIES FOR COMPOSITE LAMINATES, JUDGED AGAINST EXPERIMENTAL EVIDENCE , 2002 .

[15]  N. Johnson,et al.  Instability of the Present LEO Satellite Populations , 2008 .

[16]  M. Hinton Failure Criteria in Fibre-Reinforced-Polymer Composites: The World-Wide Failure Exercise , 2004 .

[17]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  Stefano Debei,et al.  Analysis of Goce's Disturbances Induced by Hypervelocity Impact , 2005 .

[19]  Shannon Ryan,et al.  Hypervelocity impact on CFRP: Testing, material modelling, and numerical simulation , 2008 .

[20]  F. Allahdadi,et al.  A Quadratic Yield Function for Fiber-Reinforced Composites , 1997 .

[21]  Francis H. Harlow,et al.  The Particle-In-Cell Method for Hydrodynamic Calculations , 1957 .

[22]  C. C. Chamis,et al.  Simplified composite micromechanics equations for hygral, thermal and mechanical properties , 1983 .

[23]  N. R. Barnes,et al.  The Shock Hugoniot of an Epoxy Resin , 2001 .

[24]  S. Marsh,et al.  Hugoniot equation of state of polymers , 1995 .

[25]  M. Lambert,et al.  Hypervelocity impacts and damage laws , 1997 .

[26]  L J Hart-Smith 2054. The Ten-Percent Rule for Preliminary Sizing of Fibrous Composite Structures , 1992 .

[27]  C. Kaiser,et al.  FAILURE CRITERIA FOR NON-METALLIC MATERIALS , 2004 .

[28]  H Prosser William,et al.  Acoustic Emission Signals in Thin Plates Produced by Impact Damage , 1999 .

[29]  Ching H. Yew,et al.  A study of damage in composite panels produced by hypervelocity impact , 1987 .

[30]  Frank Schäfer,et al.  Impact damage on sandwich panels and multi-layer insulation , 2001 .

[31]  Andrew C. Hansen,et al.  Composite laminate failure analysis using multicontinuum theory , 2004 .

[32]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[33]  Frank Schäfer,et al.  An engineering fragmentation model for the impact of spherical projectiles on thin metallic plates , 2006 .

[34]  Richard A. Clegg,et al.  Hypervelocity impact damage prediction in composites: Part II—experimental investigations and simulations , 2006 .

[35]  Burton G. Cour-Palais,et al.  Hypervelocity impact in metals, glass and composites , 1987 .

[36]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[37]  Melvin S. Anderson,et al.  Recent Developments in the Design, Testing and Impact-Damage Tolerance of Stiffened Composite Panels , 1980 .

[38]  M. Lambert,et al.  The validation of hydrocodes for orbital debris impact simulation , 1993 .

[39]  William P. Schonberg,et al.  Hypervelocity impact response of spaced composite material structures , 1990 .

[40]  P. D. Soden,et al.  A COMPARISON OF THE PREDICTIVE CAPABILITIES OF CURRENT FAILURE THEORIES FOR COMPOSITE LAMINATES , 1998 .

[41]  P. D. Soden,et al.  Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates , 1998 .

[42]  Eric L. Christiansen,et al.  Design and Performance Equations for Advanced Meteoroid and Debris Shields , 1993 .

[43]  Richard M. Christensen,et al.  A critical evaluation for a class of micro-mechanics models , 1990 .

[44]  William P. Schonberg,et al.  Use of composite materials in multi-wall structures to prevent perforation by hypervelocity particle impact , 1991 .

[45]  N. S. Brar,et al.  Effect of phase change on shock wave attenuation in GeO2 , 2002 .

[46]  C. Anderson,et al.  A Constitutive Formulation for Anisotropic Materials Suitable for Wave Propagation Computer Programs , 1992 .

[47]  F. Schäfer,et al.  Hypervelocity impact research - acceleration technology and applications - , 2001 .

[48]  M. R. Gorman Acoustic emission for the 1990s , 1991, IEEE 1991 Ultrasonics Symposium,.

[49]  Alessandro Francesconi,et al.  Acceleration fields induced by hypervelocity impacts on spacecraft structures , 2006 .

[50]  Tk O'Brien,et al.  Composite Interlaminar Shear Fracture Toughness, G IIc : Shear Measurement or Sheer Myth? , 1998 .

[51]  C. Hayhurst,et al.  Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates , 1997 .

[52]  William P. Schonberg,et al.  Hypervelocity impact of dual-wall space structures with graphite/epoxy inner walls , 1994 .

[53]  Raymond L. Nieder Implication of orbital debris for Space Station design , 1990 .

[54]  Numerical Simulation Of Orbital Debris Impact OnSpacecraft , 1970 .

[55]  Zheng-Ming Huang,et al.  A bridging model prediction of the ultimate strength of composite laminates subjected to biaxial loads , 2004 .

[56]  Aboundi,et al.  Book Reviews : Mechanics of Composite Materials: R.M. Jones McGraw-Hill Book Co., New York, 1975 , 1980 .

[57]  C. Kay,et al.  The characteristics of penetration for a double-sheet structure with honeycomb , 1970 .

[58]  J. W. Gehring,et al.  Experimental investigations of simulated meteoroid damage to various spacecraft structures Summary report , 1965 .

[59]  Burton G. Cour-Palais,et al.  A multi-shock concept for spacecraft shielding , 1990 .

[60]  B. G. Cour-Palais,et al.  Hypervelocity impact investigations and meteoroid shielding experience related to Apollo and Skylab , 1985 .

[61]  H. Schürmann,et al.  FAILURE ANALYSIS OF FRP LAMINATES BY MEANS OF PHYSICALLY BASED PHENOMENOLOGICAL MODELS , 1998 .

[62]  D. Roylance INTRODUCTION TO COMPOSITE MATERIALS , 2000 .

[63]  G. R. Johnson,et al.  A constitutive formulation for anisotropic materials suitable for wave propagation computer programs—II , 1994 .

[64]  Wolfgang G. Knauss,et al.  Observation of damage growth in compressively loaded laminates , 1983 .