High‐Volumetric Performance Aligned Nano‐Porous Microwave Exfoliated Graphite Oxide‐based Electrochemical Capacitors

Ultra-high volumetric performance electrochemical double layer capacitors based on high density aligned nano-porous microwave exfoliated graphite oxide have been studied. Elimination of macro-, meso-, and larger micro-pores from electrodes and controlling the nano-morphology results in very high volumetric capacitance, energy, and power density values.

[1]  Qiming Zhang,et al.  Equivalent circuit modeling of ionomer and ionic polymer conductive network composite actuators containing ionic liquids , 2012 .

[2]  Taner Yildirim,et al.  Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties , 2012 .

[3]  Zheng Yan,et al.  A seamless three-dimensional carbon nanotube graphene hybrid material , 2012, Nature Communications.

[4]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[5]  Ji Won Suk,et al.  Interfacial capacitance of single layer graphene , 2011 .

[6]  N. Shinya,et al.  Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. , 2011, Physical chemistry chemical physics : PCCP.

[7]  Hongliang Li,et al.  A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes , 2011 .

[8]  Norio Shinya,et al.  Graphene and nanostructured MnO2 composite electrodes for supercapacitors , 2011 .

[9]  G. Shi,et al.  Graphene based new energy materials , 2011 .

[10]  Yan Liu,et al.  A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. , 2011, ACS nano.

[11]  Martin Pumera,et al.  Graphene-based nanomaterials for energy storage , 2011 .

[12]  R. Ruoff,et al.  High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. , 2011, ACS nano.

[13]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[14]  P. Taberna,et al.  Qualitative Electrochemical Impedance Spectroscopy study of ion transport into sub-nanometer carbon pores in Electrochemical Double Layer Capacitor electrodes , 2010 .

[15]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[16]  Takeo Yamada,et al.  Extracting the Full Potential of Single‐Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density , 2010, Advanced materials.

[17]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[18]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[19]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[20]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[21]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[22]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[23]  P. Simon,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[24]  V. Obreja,et al.  On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review , 2008 .

[25]  A. Burke R&D considerations for the performance and application of electrochemical capacitors , 2007 .

[26]  Jean-Michel Vinassa,et al.  Characterization methods and modelling of ultracapacitors for use as peak power sources , 2007 .

[27]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[28]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[29]  Rüdiger Kötz,et al.  Capacitance limits of high surface area activated carbons for double layer capacitors , 2005 .

[30]  E. Lust,et al.  Influence of solvent nature on the electrochemical characteristics of nanoporous carbon|1 M (C2H5)3CH3NBF4 electrolyte solution interface , 2004 .

[31]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[32]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[33]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[34]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[35]  L. Dao,et al.  Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution , 1999 .

[36]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[37]  Pierre-Louis Taberna,et al.  Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors , 2009 .