Parameterisation of Logics

Combined logics have recently deserved much attention. In this paper we develop a detailed study of a form of combination that generalises the temporalisation construction proposed in [16]. It consists of replacing an atomic part (formal parameter) of one (parameterised) logic by another (actual parameter) logic. We provide a categorial characterisation of parameterisation and illustrate it with an example. Under reasonable assumptions, we show that the result logic is a conservative extension of both the parameterised and parameter logics and also that soundness, completeness and decidability are transferred.

[1]  Till Mossakowski,et al.  Combining and representing logical systems using model-theoretic parchments , 1997, WADT.

[2]  Cristina Sernadas,et al.  Synchronization of Logics , 1997, Stud Logica.

[3]  Till Mossakowski,et al.  Combining and Representing Logical Systems , 1997, Category Theory and Computer Science.

[4]  Cristina Sernadas,et al.  Fibring of Logics as a Categorial Construction , 1999, J. Log. Comput..

[5]  A. E. Eiben,et al.  Combining Algebraizable Logics , 1996, Notre Dame J. Formal Log..

[6]  José Meseguer,et al.  May I Borrow Your Logic? , 1993, MFCS.

[7]  Joseph A. Goguen,et al.  A Study in the Functions of Programming Methodology: Specifications, Institutions, Charters and Parchments , 1985, CTCS.

[8]  José Luiz Fiadeiro,et al.  Structuring Theories on Consequence , 1988, ADT.

[9]  Dov M. Gabbay,et al.  Fibred semantics and the weaving of logics. Part 1: Modal and intuitionistic logics , 1996, Journal of Symbolic Logic.

[10]  Cristina Sernadas,et al.  Synchronization of Logics with Mixed Rules: Completeness Preservation , 1997, AMAST.

[11]  Robert Harper,et al.  Structured Theory Presentations and Logic Representations , 1994, Ann. Pure Appl. Log..

[12]  Cristina Sernadas,et al.  Categorial bring of logics with terms and binding operators , 2000 .

[13]  Dov M. Gabbay,et al.  Combining Temporal Logic Systems , 1996, Notre Dame J. Formal Log..

[14]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[15]  Hans-Dieter Ehrich On the Theory of Specification, Implementation, and Parametrization of Abstract Data Types , 1982, JACM.

[16]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[17]  M. de Rijke,et al.  Why Combine Logics? , 1997, Stud Logica.

[18]  M. de Rijke,et al.  Zooming In, Zooming Out , 1997, J. Log. Lang. Inf..

[19]  Joseph A. Goguen,et al.  Introducing Institutions , 1983, Logic of Programs.

[20]  Andrzej Tarlecki Moving Between Logical Systems , 1995, COMPASS/ADT.

[21]  K. J. Barwise,et al.  Axioms for abstract model theory , 1974 .

[22]  Dov M. Gabbay,et al.  Adding a temporal dimension to a logic system , 1992, J. Log. Lang. Inf..

[23]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .