When a local Hamiltonian must be frustration-free
暂无分享,去创建一个
Or Sattath | Roderich Moessner | Siddhardh C Morampudi | Chris R Laumann | Or Sattath | R. Moessner | C. Laumann | S. Morampudi
[1] W. Marsden. I and J , 2012 .
[2] D. Gottesman. An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.
[3] D. S. Gaunt,et al. Hard‐Sphere Lattice Gases. II. Plane‐Triangular and Three‐Dimensional Lattices , 1967 .
[4] P. Morse. Annals of Physics , 1957, Nature.
[5] Alexander Russell,et al. Bounds on the Quantum Satisfiability Threshold , 2009, ICS.
[6] M. Mézard,et al. Information, Physics, and Computation , 2009 .
[7] Daniel Nagaj,et al. Quantum 3-SAT Is QMA1-Complete , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[8] B. M. Fulk. MATH , 1992 .
[9] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[10] S. Todo. Transfer-Matrix Study Of Negative-Fugacity Singularity Of Hard-Core Lattice Gas , 1999 .
[11] D. Poulin,et al. Quantum Graphical Models and Belief Propagation , 2007, 0708.1337.
[12] Jeffrey D. Ullman,et al. Proceedings of the third annual ACM symposium on Theory of computing , 1971 .
[13] Dimitris Achlioptas,et al. THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.
[14] Martin Schwarz,et al. An Information-Theoretic Proof of the Constructive Commutative Quantum Lovász Local Lemma , 2013, ArXiv.
[15] Xiao-Gang Wen,et al. String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.
[16] Vadim E. Levit,et al. The independence polynomial of a graph - a survey , 2005 .
[17] L. Christophorou. Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.
[18] Christopher R. Laumann,et al. On product, generic and random generic quantum satisfiability , 2009, ArXiv.
[19] Y. Shapir. New relations between the monomer-dimer and the Yang-Lee models , 1982 .
[20] T. D. Lee,et al. Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .
[21] Christopher R. Laumann,et al. Random quantum satisfiability , 2010, Quantum Inf. Comput..
[22] Sandy Irani,et al. The Power of Quantum Systems on a Line , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).
[23] Journal of Chemical Physics , 1932, Nature.
[24] M. Hastings. Quantum belief propagation: An algorithm for thermal quantum systems , 2007, 0706.4094.
[25] Yuval Peres,et al. The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.
[26] D. S. Gaunt,et al. Hard‐Sphere Lattice Gases. I. Plane‐Square Lattice , 1965 .
[27] Mikhail N. Vyalyi,et al. Classical and Quantum Computation , 2002, Graduate studies in mathematics.
[28] Mario Szegedy,et al. Moser and tardos meet Lovász , 2011, STOC.
[29] Dorit Aharonov,et al. Quantum NP - A Survey , 2002, quant-ph/0210077.
[30] Roderich Moessner,et al. Random quantum satisfiabiilty , 2010 .
[31] Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011 , 2011, STOC.
[32] Matthew Coudron,et al. Unfrustration Condition and Degeneracy of Qudits on Trees , 2012 .
[33] Michael E. Fisher,et al. Yang-Lee Edge Singularity and ϕ 3 Field Theory , 1978 .
[34] O. J. Heilmann,et al. Theory of monomer-dimer systems , 1972 .
[35] S. Sondhi,et al. Cavity method for quantum spin glasses on the Bethe lattice , 2007, 0706.4391.
[36] Andris Ambainis,et al. A quantum lovász local lemma , 2009, STOC '10.
[37] J. Cardy,et al. Conformal invariance and the Yang-Lee edge singularity in two dimensions. , 1985, Physical review letters.
[38] From quantum mechanics to classical statistical physics: Generalized Rokhsar–Kivelson Hamiltonians and the “Stochastic Matrix Form” decomposition , 2005, cond-mat/0502068.
[39] Hendrik B. Geyer,et al. Journal of Physics A - Mathematical and General, Special Issue. SI Aug 11 2006 ?? Preface , 2006 .
[40] M. Mézard,et al. The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.
[41] Frank Verstraete,et al. Peps as unique ground states of local hamiltonians , 2007, Quantum Inf. Comput..
[42] Christian Hoffmann,et al. Computational complexity of graph polynomials , 2010 .
[43] Edward Farhi,et al. Unfrustrated qudit chains and their ground states , 2010, 1001.1006.
[44] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[45] Lenka Zdeborová,et al. The number of matchings in random graphs , 2006, ArXiv.
[46] M. Fisher,et al. The universal repulsive‐core singularity and Yang–Lee edge criticality , 1995 .
[47] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[48] Ethan D. Bloch. Infinite and Finite Sets , 2003 .
[49] Kennedy,et al. Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.
[50] Sergey Bravyi,et al. Efficient algorithm for a quantum analogue of 2-SAT , 2006, quant-ph/0602108.
[51] Samuel J. Lomonaco,et al. Quantum information science and its contributions to mathematics : American Mathematical Society Short Course, January 3-4, 2009, Washington, DC , 2010 .
[52] A. Scott,et al. The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma , 2003, cond-mat/0309352.
[53] D. Rokhsar,et al. Superconductivity and the quantum hard-core dimer gas. , 1988, Physical review letters.
[54] D. Poland. On the universality of the nonphase transition singularity in hard-particle systems , 1984 .
[55] S. Todo. Transfer-Matrix Study of Hard-Core Singularity for Hard-Square Lattice Gas , 1997, cond-mat/9703176.
[56] R. Baxter,et al. Hard hexagons: exact solution , 1980 .
[57] Or Sattath,et al. A constructive quantum Lovasz local lemma for commuting projectors , 2013, Quantum Inf. Comput..
[58] L. Landau. Fault-tolerant quantum computation by anyons , 2003 .
[59] J. Groeneveld,et al. Two theorems on classical many-particle systems , 1962 .
[60] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[61] Mikael Skoglund,et al. Bounds on Threshold of Regular Random k-SAT , 2010, SAT.
[62] James B. Shearer,et al. On a problem of spencer , 1985, Comb..
[63] J. M. BoardmanAbstract,et al. Contemporary Mathematics , 2007 .
[64] M. Fisher,et al. Identity of the universal repulsive-core singularity with Yang-Lee edge criticality. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[65] T. D. Lee,et al. Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .
[66] Baram,et al. Universality of the cluster integrals of repulsive systems. , 1987, Physical review. A, General physics.