Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope

We propose and demonstrate a method for calibrating atomic trajectories in a large-area dual-atom-interferometer gyroscope. The atom trajectories are monitored by modulating and delaying the Raman transition, and they are precisely calibrated by controlling the laser orientation and the bias magnetic field. To improve the immunity to the gravity effect and the common phase noise, the symmetry and the overlapping of two large-area atomic interference loops are optimized by calibrating the atomic trajectories and by aligning the Raman-laser orientations. The dual-atom-interferometer gyroscope is applied in the measurement of the Earth rotation. The sensitivity is $1.2\times10^{-6}$ rad/s/$\sqrt{Hz}$, and the long-term stability is $6.2\times10^{-8}$ rad/s $@$ $2000$ s.

[1]  Hervé C. Lefèvre,et al.  The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology , 2013 .

[2]  G. Stedman,et al.  Ring-laser tests of fundamental physics and geophysics , 1997 .

[3]  B. Canuel,et al.  Six-axis inertial sensor using cold-atom interferometry. , 2006, Physical review letters.

[4]  W. Chaibi,et al.  Characterization and limits of a cold-atom Sagnac interferometer , 2009, 0907.2580.

[5]  H. Schuh,et al.  Tides and Earth Rotation , 1998 .

[6]  M. Zhan,et al.  Measurement of the quadratic Zeeman shift of 85Rb hyperfine sublevels using stimulated Raman transitions , 2008, 0812.0231.

[7]  A. Landragin,et al.  Continuous Cold-Atom Inertial Sensor with 1  nrad/sec Rotation Stability. , 2016, Physical review letters.

[8]  Filippo Levi,et al.  Double-pass acousto-optic modulator system , 2005 .

[9]  A. Peters,et al.  First gravity measurements using the mobile atom interferometer GAIN , 2013 .

[10]  B. Canuel,et al.  The Sagnac effect: 20 years of development in matter-wave interferometry , 2014, 1412.0711.

[11]  S. Abend,et al.  Self-alignment of a compact large-area atomic Sagnac interferometer , 2012 .

[12]  John K. Stockton,et al.  Absolute geodetic rotation measurement using atom interferometry. , 2011, Physical review letters.

[13]  T. Gustavson,et al.  Rotation sensing with a dual atom-interferometer Sagnac gyroscope , 2000 .

[14]  E. C. Pavlis,et al.  A confirmation of the general relativistic prediction of the Lense–Thirring effect , 2004, Nature.

[15]  W. Schleich,et al.  Composite-light-pulse technique for high-precision atom interferometry. , 2015, Physical review letters.

[16]  Darryll J. Pines,et al.  Characterization of Ring Laser Gyro Performance Using the Allan Variance Method , 1997 .

[17]  M. Zhan,et al.  Magnetic field dependence of coherent population transfer by the stimulated Raman transition , 2008 .

[18]  A. Landragin,et al.  Compact laser system for atom interferometry , 2005, physics/0510261.

[19]  G. Biedermann,et al.  Dual-axis, high data-rate atom interferometer via cold ensemble exchange , 2014, 1407.3847.

[20]  M. Zhan,et al.  Continuous Dynamic Rotation Measurements Using a Compact Cold Atom Gyroscope , 2016 .

[21]  G. Schmidt,et al.  Inertial sensor technology trends , 2001 .

[22]  M. Kasevich,et al.  Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope. , 2005, Physical Review Letters.

[23]  B. Guinot Solar time, legal time, time in use , 2011 .

[24]  Scully,et al.  Quantum-noise limits to matter-wave interferometry. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[25]  Taeg Yong Kwon,et al.  Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry , 2014 .

[26]  S. Cornish,et al.  Modulation transfer spectroscopy in atomic rubidium , 2008, 0805.2708.