Hamilton Cycles in Random Graphs: a bibliography

We provide an annotated bibliography for the study of Hamilton cycles in random graphs and hypergraphs.

[1]  Paul G. Spirakis,et al.  On the Existence of Hamiltonian Cycles in Random Intersection Graphs , 2005, ICALP.

[2]  T. Johansson A condition for Hamiltonicity in Sparse Random Graphs with a Fixed Degree Sequence , 2020, 2001.05258.

[3]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[4]  Michael Anastos,et al.  How many randomly colored edges make a randomly colored dense graph rainbow Hamiltonian or rainbow connected? , 2018, J. Graph Theory.

[5]  Andrew Thomason A simple linear expected time algorithm for finding a hamilton path , 1989, Discret. Math..

[6]  János Komlós,et al.  The longest path in a random graph , 1981, Comb..

[7]  Alan M. Frieze,et al.  Rainbow hamilton cycles in random graphs , 2010, Random Struct. Algorithms.

[8]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[9]  Alan M. Frieze,et al.  Hamilton cycles in random lifts of graphs , 2006, Eur. J. Comb..

[10]  Mathias Schacht,et al.  Sharp thresholds for nonlinear Hamiltonian cycles in hypergraphs , 2019, Random Struct. Algorithms.

[11]  Benny Sudakov,et al.  Compatible Hamilton cycles in random graphs , 2014, Random Struct. Algorithms.

[12]  T.I. Fenner,et al.  On the existence of Hamiltonian cycles in a class of random graphs , 1983, Discret. Math..

[13]  Benny Sudakov,et al.  Random directed graphs are robustly Hamiltonian , 2014, Random Struct. Algorithms.

[14]  Alan M. Frieze,et al.  Hamilton cycles in 3-out , 2009, Random Struct. Algorithms.

[15]  Benny Sudakov,et al.  Dirac's theorem for random graphs , 2012, Random Struct. Algorithms.

[16]  Michael Krivelevich,et al.  Submitted to the Annals of Applied Probability HAMILTON CYCLES IN RANDOM GEOMETRIC GRAPHS By , 2010 .

[17]  Alan M. Frieze,et al.  Multi-Coloured Hamilton Cycles in Random Edge-Coloured Graphs , 2002, Combinatorics, Probability and Computing.

[18]  Michael Krivelevich,et al.  Rainbow Hamilton cycles in random graphs and hypergraphs , 2015, 1506.02929.

[19]  Asaf Ferber,et al.  Packing and counting arbitrary Hamilton cycles in random digraphs , 2016, Random Struct. Algorithms.

[20]  Ueli Peter,et al.  Robust Hamiltonicity of random directed graphs , 2014, J. Comb. Theory, Ser. B.

[21]  Alan M. Frieze,et al.  On random k-out subgraphs of large graphs , 2017, Random Struct. Algorithms.

[22]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[23]  Sanming Zhou,et al.  Hamiltonicity of random graphs produced by 2-processes , 2007, Random Struct. Algorithms.

[24]  Alan M. Frieze,et al.  Generating and Counting Hamilton Cycles in Random Regular Graphs , 1996, J. Algorithms.

[25]  Colin Cooper The union of two random permutations does not have a directed Hamilton cycle , 2001, Random Struct. Algorithms.

[26]  Larry Goldstein,et al.  Size biased couplings and the spectral gap for random regular graphs , 2015, 1510.06013.

[27]  Oliver Riordan,et al.  Spanning Subgraphs of Random Graphs , 2000, Combinatorics, Probability and Computing.

[28]  Michael Anastos A fast algorithm on average for solving the Hamilton Cycle problem , 2021, ArXiv.

[29]  Katarzyna Rybarczyk Finding Hamilton cycles in random intersection graphs , 2018, Discret. Math. Theor. Comput. Sci..

[30]  Mindaugas Bloznelis,et al.  A note on Hamiltonicity of uniform random intersection graphs , 2011 .

[31]  Andrzej Dudek,et al.  Embedding the Erdős-Rényi hypergraph into the random regular hypergraph and Hamiltonicity , 2015, J. Comb. Theory, Ser. B.

[32]  Prasad Chebolu Topics in random graphs , 2008 .

[33]  A. Frieze,et al.  ON RANDOM REGULAR GRAPHS WITH NON-CONSTANT DEGREE , 2005 .

[34]  Michael Krivelevich,et al.  Random Graph's Hamiltonicity is Strongly Tied to its Minimum Degree , 2020, Electron. J. Comb..

[35]  Alan M. Frieze,et al.  An almost linear time algorithm for finding Hamilton cycles in sparse random graphs with minimum degree at least three , 2012, Random Struct. Algorithms.

[36]  Svante Janson,et al.  Rainbow Hamilton cycles in random regular graphs , 2007, Random Struct. Algorithms.

[37]  Tony Johansson,et al.  On Hamilton cycles in Erdős‐Rényi subgraphs of large graphs , 2020, Random Struct. Algorithms.

[38]  Michael Krivelevich,et al.  On the trace of random walks on random graphs , 2015 .

[39]  Guy Louchard,et al.  A Distributed Algorithm to Find Hamiltonian Cycles in Random Graphs , 2004, CAAN.

[40]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[41]  Alberto Espuny Díaz,et al.  Dirac’s theorem for random regular graphs , 2019, Combinatorics, Probability and Computing.

[42]  Alan M. Frieze Limit Distribution for the Existence of Hamiltonian Cycles in Random Bipartite Graphs , 1985, Eur. J. Comb..

[43]  Bhargav P. Narayanan,et al.  The threshold for the square of a Hamilton cycle , 2020, Proceedings of the American Mathematical Society.

[44]  Alan M. Frieze,et al.  Maker Breaker on digraphs , 2020, J. Graph Theory.

[45]  Richard Mycroft,et al.  Hamilton ℓ-Cycles in Randomly Perturbed Hypergraphs , 2018, Electron. J. Comb..

[46]  Benny Sudakov,et al.  Local Resilience and Hamiltonicity Maker–Breaker Games in Random Regular Graphs , 2009, Combinatorics, Probability and Computing.

[47]  Guy Louchard,et al.  A distributed algorithm to find Hamiltonian cycles in G(n, p) random graphs , 2005 .

[48]  Richard Montgomery,et al.  Spanning cycles in random directed graphs , 2021, 2103.06751.

[49]  Alan M. Frieze,et al.  Multicoloured Hamilton cycles in random graphs; an anti-Ramsey threshold , 1995, Electron. J. Comb..

[50]  Xavier Pérez-Giménez,et al.  Rainbow perfect matchings and Hamilton cycles in the random geometric graph , 2016, Random Struct. Algorithms.

[51]  Nicholas C. Wormald,et al.  Random Matchings Which Induce Hamilton Cycles and Hamiltonian Decompositions of Random Regular Graphs , 2001, J. Comb. Theory, Ser. B.

[52]  Yury Person,et al.  A Dirac-type Theorem for Berge Cycles in Random Hypergraphs , 2019, Electron. J. Comb..

[53]  Benny Sudakov,et al.  Cores of random graphs are born Hamiltonian , 2013, 1303.3524.

[54]  Michael Krivelevich,et al.  Expansion, long cycles, and complete minors in supercritical random subgraphs of the hypercube , 2021 .

[55]  Michael Krivelevich,et al.  Cycle lengths in sparse random graphs , 2021, Random Structures & Algorithms.

[56]  Michael Anastos,et al.  Hamilton cycles in random graphs with minimum degree at least 3: An improved analysis , 2020, Random Struct. Algorithms.

[57]  Michael Krivelevich,et al.  Hitting time results for Maker‐Breaker games , 2010, Random Struct. Algorithms.

[58]  Andrzej Dudek,et al.  On offset Hamilton cycles in random hypergraphs , 2017, Discret. Appl. Math..

[59]  Jeff Kahn,et al.  Asymptotics for Shamir's problem , 2019, Advances in Mathematics.

[60]  Mathias Schacht,et al.  Hamiltonian Berge cycles in random hypergraphs , 2018, Combinatorics, Probability and Computing.

[61]  Yoshiharu Kohayakawa,et al.  Powers of tight Hamilton cycles in randomly perturbed hypergraphs , 2018, Random Struct. Algorithms.

[62]  Annika Heckel,et al.  Random triangles in random graphs , 2018, Random Struct. Algorithms.

[63]  N. Linial,et al.  Random Graph Coverings I , 2000 .

[64]  Benny Sudakov,et al.  Local resilience of graphs , 2007, Random Struct. Algorithms.

[65]  Alan M. Frieze,et al.  Hamilton cycles in the union of random permutations , 2001, Random Struct. Algorithms.

[66]  Michael Anastos A note on long cycles in sparse random graphs , 2021 .

[67]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[68]  Benny Sudakov,et al.  On the Resilience of Hamiltonicity and Optimal Packing of Hamilton Cycles in Random Graphs , 2011, SIAM J. Discret. Math..

[69]  Daniela Kühn,et al.  Resilient Degree Sequences with respect to Hamilton Cycles and Matchings in Random Graphs , 2018, Electron. J. Comb..

[70]  Alan M. Frieze,et al.  Packing Hamilton Cycles Online , 2016, Combinatorics, Probability and Computing.

[71]  Angelika Steger,et al.  An O(n) time algorithm for finding Hamilton cycles with high probability , 2020, ITCS.

[72]  Michael Krivelevich,et al.  On the Number of Hamilton Cycles in Sparse Random Graphs , 2013, SIAM J. Discret. Math..

[73]  Wojciech Samotij,et al.  Pancyclic subgraphs of random graphs , 2010, J. Graph Theory.

[74]  Benny Sudakov,et al.  The Threshold Probability for Long Cycles , 2014, Combinatorics, Probability and Computing.

[75]  Angelika Steger,et al.  Local Resilience for Squares of Almost Spanning Cycles in Sparse Random Graphs , 2016, Electron. J. Comb..

[76]  Colin McDiarmid Expected numbers at hitting times , 1991, J. Graph Theory.

[77]  W. C. Stephen Suen On large induced trees and long induced paths in sparse random graphs , 1992, J. Comb. Theory, Ser. B.

[78]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[79]  Alan M. Frieze,et al.  On Perfect Matchings and Hamilton Cycles in Sums of Random Trees , 1999, SIAM J. Discret. Math..

[80]  Andrzej Dudek,et al.  On Rainbow Hamilton Cycles in Random Hypergraphs , 2018, Electron. J. Comb..

[81]  A. Frieze ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS , 1988 .

[82]  N. Wormald Models of random regular graphs , 2010 .

[83]  Benny Sudakov,et al.  Random regular graphs of high degree , 2001, Random Struct. Algorithms.

[84]  Michael Anastos,et al.  Packing Directed and Hamilton Cycles Online , 2016 .

[85]  Richard Montgomery,et al.  Hamiltonicity in random directed graphs is born resilient , 2019, Combinatorics, Probability and Computing.

[86]  Andrzej Dudek,et al.  High powers of Hamiltonian cycles in randomly augmented graphs , 2020, J. Graph Theory.

[87]  Saharon Shelah,et al.  Expected Computation Time for Hamiltonian Path Problem , 1987, SIAM J. Comput..

[88]  Michael Anastos,et al.  Fast algorithms for solving the Hamilton Cycle problem with high probability , 2021, SODA.

[89]  Rajko Nenadov,et al.  Powers of Hamilton cycles in random graphs and tight Hamilton cycles in random hypergraphs , 2016, Random Struct. Algorithms.

[90]  Nicholas C. Wormald,et al.  Almost All Regular Graphs Are Hamiltonian , 1994, Random Struct. Algorithms.

[91]  Benny Sudakov,et al.  Robust Hamiltonicity of Dirac graphs , 2012, 1201.2202.

[92]  Daniela Kühn,et al.  Hamilton decompositions of regular expanders: Applications , 2012, J. Comb. Theory, Ser. B.

[93]  Alan M. Frieze,et al.  On the Connectivity of Random k-th Nearest Neighbour Graphs , 1995, Combinatorics, Probability and Computing.

[94]  Alan M. Frieze,et al.  Rainbow matchings and Hamilton cycles in random graphs , 2013, Random Struct. Algorithms.

[95]  Alan M. Frieze On large matchings and cycles in sparse random graphs , 1986, Discret. Math..

[96]  Alan M. Frieze,et al.  Large holes in sparse random graphs , 1987, Comb..

[97]  Alan M. Frieze,et al.  Multicolored Trees in Random Graphs , 1994, Random Struct. Algorithms.

[98]  Alan M. Frieze,et al.  Finding hamilton cycles in sparse random graphs , 1987, J. Comb. Theory, Ser. B.

[99]  Alan M. Frieze,et al.  Random Regular Graphs of Non-Constant Degree: Connectivity and Hamiltonicity , 2002, Combinatorics, Probability and Computing.

[100]  J. Komlos,et al.  First Occurrence of Hamilton Cycles in Random Graphs , 1985 .

[101]  Benny Sudakov,et al.  Longest cycles in sparse random digraphs , 2011, Random Struct. Algorithms.

[102]  Benny Sudakov,et al.  Finding paths in sparse random graphs requires many queries , 2015, Random Struct. Algorithms.

[103]  Nicholas C. Wormald,et al.  Existence of long cycles in random cubic graphs , 1984 .

[104]  Tomasz Luczak,et al.  Hamilton cycles in random lifts of graphs , 2013, Eur. J. Comb..

[105]  Tom Bohman,et al.  How many random edges make a dense graph hamiltonian? , 2003, Random Struct. Algorithms.

[106]  Andrzej Dudek,et al.  Tight Hamilton cycles in random uniform hypergraphs , 2011, Random Struct. Algorithms.

[107]  M. Krivelevich,et al.  Turán‐type problems for long cycles in random and pseudo‐random graphs , 2019, Journal of the London Mathematical Society.

[108]  B. Bollobás The evolution of random graphs , 1984 .

[109]  Michael Krivelevich,et al.  On covering expander graphs by hamilton cycles , 2011, Random Struct. Algorithms.

[110]  Josep Díaz,et al.  Sharp threshold for hamiltonicity of random geometric graphs , 2006, SIAM J. Discret. Math..

[111]  Pu Gao,et al.  Sandwiching random regular graphs between binomial random graphs , 2020, SODA.

[112]  Daniel Poole,et al.  On Weak Hamiltonicity of a Random Hypergraph , 2014, 1410.7446.

[113]  Eli Shamir,et al.  How many random edges make a graph hamiltonian? , 1983, Comb..

[114]  B. Bollobás,et al.  A critical constant for the k nearest-neighbour model , 2007, Advances in Applied Probability.

[115]  Nicholas C. Wormald,et al.  Hamilton cycles containing randomly selected edges in random regular graphs , 2001, Random Struct. Algorithms.

[116]  Nicholas C. Wormald,et al.  Disjoint Hamilton cycles in the random geometric graph , 2009, J. Graph Theory.

[117]  Daniela Kühn,et al.  On Pósa's Conjecture for Random Graphs , 2012, SIAM J. Discret. Math..

[118]  C. McDiarmid Clutter percolation and random graphs , 1980 .

[119]  Benny Sudakov,et al.  Cycles and Matchings in Randomly Perturbed Digraphs and Hypergraphs , 2015, Combinatorics, Probability and Computing.

[120]  Daniela Kühn,et al.  Edge Correlations in Random Regular Hypergraphs and Applications to Subgraph Testing , 2019, SIAM J. Discret. Math..

[121]  Benny Sudakov,et al.  Resilient Pancyclicity of Random and Pseudorandom Graphs , 2009, SIAM J. Discret. Math..

[122]  Michael Krivelevich,et al.  On two Hamilton cycle problems in random graphs , 2008 .

[123]  Colin Cooper Pancyclic Hamilton cycles in random graphs , 1991, Discret. Math..

[125]  Konstantin Tikhomirov,et al.  The spectral gap of dense random regular graphs , 2016, The Annals of Probability.

[126]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[127]  Richard Mycroft,et al.  Hamilton ℓ-Cycles in Randomly Perturbed Hypergraphs , 2018, Electron. J. Comb..

[128]  Benny Sudakov,et al.  Counting Hamilton cycles in sparse random directed graphs , 2017, Random Struct. Algorithms.

[129]  Alan M. Frieze,et al.  Loose Hamilton Cycles in Random 3-Uniform Hypergraphs , 2010, Electron. J. Comb..

[130]  Quentin F. Stout,et al.  Optimal parallel construction of Hamiltonian cycles and spanning trees in random graphs , 1993, SPAA '93.

[131]  Katarzyna Rybarczyk,et al.  Sharp Threshold Functions for Random Intersection Graphs via a Coupling Method , 2011, Electron. J. Comb..

[132]  Daniela Kühn,et al.  Optimal covers with Hamilton cycles in random graphs , 2014, Comb..

[133]  Yoshiharu Kohayakawa,et al.  Tight Hamilton cycles in random hypergraphs , 2013, Random Struct. Algorithms.

[134]  Debsoumya Chakraborti,et al.  Colorful Hamilton cycles in random graphs , 2021 .

[135]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[136]  Benny Sudakov,et al.  Long paths and cycles in random subgraphs of graphs with large minimum degree , 2012, Random Struct. Algorithms.

[137]  E. Upfal,et al.  On factors in random graphs , 1981 .

[138]  Michael Anastos,et al.  A scaling limit for the length of the longest cycle in a sparse random graph , 2021, J. Comb. Theory, Ser. B.

[139]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[140]  Richard Montgomery,et al.  Hamiltonicity in random graphs is born resilient , 2017, J. Comb. Theory B.

[141]  Oliver Riordan Random cliques in random graphs , 2018 .

[142]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[143]  Angelika Steger,et al.  Resilience of perfect matchings and Hamiltonicity in random graph processes , 2017, Random Struct. Algorithms.

[144]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[145]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[146]  Alan M. Frieze,et al.  An algorithm for finding Hamilton cycles in random graphs , 1985, STOC '85.

[147]  Wojciech Samotij,et al.  Optimal Packings of Hamilton Cycles in Sparse Random Graphs , 2011, SIAM J. Discret. Math..

[148]  Van Vu,et al.  Sandwiching random graphs: universality between random graph models , 2004 .

[149]  Béla Bollobás Long paths in sparse random graphs , 1982, Comb..

[150]  Alan M. Frieze,et al.  Partitioning random graphs into large cycles , 1988, Discret. Math..

[151]  Svante Janson,et al.  The Numbers of Spanning Trees, Hamilton Cycles and Perfect Matchings in a Random Graph , 1994, Combinatorics, Probability and Computing.

[152]  N. Fountoulakis,et al.  Hamilton cycles and perfect matchings in the KPKVB model , 2019, Stochastic Processes and their Applications.

[153]  Alan M. Frieze,et al.  Perfect matchings and Hamiltonian cycles in the preferential attachment model , 2016, Random Struct. Algorithms.

[154]  Alan M. Frieze,et al.  Hamiltonian cycles in random regular graphs , 1984, J. Comb. Theory, Ser. B.

[155]  Rajko Nenadov,et al.  Sprinkling a Few Random Edges Doubles the Power , 2018, SIAM J. Discret. Math..

[156]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[157]  Alan M. Frieze,et al.  Hamilton Cycles in Random Graphs with a Fixed Degree Sequence , 2010, SIAM J. Discret. Math..

[158]  Michael Krivelevich,et al.  Finding a Hamilton cycle fast on average using rotations and extensions , 2019, Random Struct. Algorithms.

[159]  Andrzej Dudek,et al.  Optimal Divisibility Conditions for Loose Hamilton Cycles in Random Hypergraphs , 2012, Electron. J. Comb..

[160]  Packing , 2020, Definitions.

[161]  Yury Person,et al.  Spanning structures and universality in sparse hypergraphs , 2015, Random Struct. Algorithms.

[162]  Pawel Pralat,et al.  On the Existence of Hamilton Cycles with a Periodic Pattern in a Random Digraph , 2020, Electron. J. Comb..

[163]  Béla Bollobás Complete Matchings in Random Subgraphs on the Cube , 1990, Random Struct. Algorithms.

[164]  Michael Anastos,et al.  Packing Hamilton Cycles in Cores of Random Graphs. , 2021, 2107.03527.

[165]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[166]  Alan M. Frieze,et al.  On the number of hamilton cycles in a random graph , 1989, J. Graph Theory.

[167]  Colin Cooper 1-Pancyclic Hamilton Cycles in Random Graphs , 1992, Random Struct. Algorithms.

[168]  Alan M. Frieze,et al.  Hamilton Cycles in Random Regular Digraphs , 1994, Combinatorics, Probability and Computing.

[169]  Volker Turau,et al.  A Distributed Algorithm for Finding Hamiltonian Cycles in Random Graphs in O(log n) Time , 2018, SIROCCO.

[170]  Michael Krivelevich,et al.  Hitting Time of Edge Disjoint Hamilton Cycles in Random Subgraph Processes on Dense Base Graphs , 2019, SIAM J. Discret. Math..

[171]  Alan M. Frieze,et al.  On a greedy 2‐matching algorithm and Hamilton cycles in random graphs with minimum degree at least three , 2011, Random Struct. Algorithms.

[172]  Oliver Riordan Long cycles in random subgraphs of graphs with large minimum degree , 2014, Random Struct. Algorithms.

[173]  Mikhail Isaev,et al.  A threshold result for loose Hamiltonicity in random regular uniform hypergraphs , 2020, J. Comb. Theory, Ser. B.

[174]  Nathan Linial,et al.  Random Graph Coverings I: General Theory and Graph Connectivity , 2002, Comb..

[175]  Alan M. Frieze,et al.  Elegantly Colored Paths and Cycles in Edge Colored Random Graphs , 2014, SIAM J. Discret. Math..

[176]  Michael Krivelevich,et al.  Waiter-Client and Client-Waiter Hamiltonicity games on random graphs , 2015, Eur. J. Comb..

[177]  Peter Allen,et al.  Finding tight Hamilton cycles in random hypergraphs faster , 2017, Combinatorics, Probability and Computing.

[178]  Asaf Ferber,et al.  Packing, counting and covering Hamilton cycles in random directed graphs , 2015, Electron. Notes Discret. Math..

[179]  I. Palásti,et al.  On Hamilton-cycles of random graphs , 1971 .

[180]  Angelika Steger,et al.  Local resilience of an almost spanning k‐cycle in random graphs , 2017, Random Struct. Algorithms.

[181]  N. Wormald,et al.  Models of the , 2010 .

[182]  Alan M. Frieze,et al.  Hamilton Cycles in a Class of Random Directed Graphs , 1994, J. Comb. Theory, Ser. B.

[183]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[184]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[185]  Alan M. Frieze,et al.  Hamilton cycles in random graphs and directed graphs , 2000, Random Struct. Algorithms.

[186]  Benny Sudakov,et al.  Hamiltonicity thresholds in Achlioptas processes , 2008, Random Struct. Algorithms.

[187]  Daniela Kühn,et al.  Edge‐disjoint Hamilton cycles in random graphs , 2011, Random Struct. Algorithms.

[188]  Julia Böttcher,et al.  EMBEDDING SPANNING BOUNDED DEGREE GRAPHS IN RANDOMLY PERTURBED GRAPHS , 2018 .

[189]  Michael Krivelevich,et al.  Biased games on random boards , 2012, Random Struct. Algorithms.

[190]  B. Bollobás,et al.  An algorithm for finding hamilton paths and cycles in random graphs , 1987 .

[191]  Alan M. Frieze Parallel Algorithms for Finding Hamilton Cycles in Random Graphs , 1987, Inf. Process. Lett..