Some Remarks on Free Energy and Coarse-Graining

We present recent results on coarse-graining techniques for thermodynamic quantities (canonical averages) and dynamical quantities (averages of path functionals over solutions of overdamped Langevin equations). The question is how to obtain reduced models to compute such quantities, in the specific case when the functional to be averaged only depends on a few degrees of freedom. We mainly review, numerically illustrate and extend results from (Blanc et al. Journal of Nonlinear Science 20(2):241–275, 2010; Legoll and Lelievre Nonlinearity 23(9):2131–2163, 2010.), concerning the computation of the stress-strain relation for one-dimensional chains of atoms, and the construction of an effective dynamics for a scalar coarse-grained variable when the complete system evolves according to the overdamped Langevin equation.

[1]  T. Lelièvre,et al.  Effective dynamics using conditional expectations , 2009, 0906.4865.

[2]  F. Smithies Linear Operators , 2019, Nature.

[3]  M. Osborne,et al.  Topological Vector Spaces , 2014 .

[4]  R. Ellis An overview of the theory of large deviations and applications to statistical mechanics , 1995 .

[5]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[6]  S. Varadhan,et al.  Large deviations , 2019, Graduate Studies in Mathematics.

[7]  Frédéric Legoll,et al.  Finite-Temperature Coarse-Graining of One-Dimensional Models: Mathematical Analysis and Computational Approaches , 2010, J. Nonlinear Sci..

[8]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[9]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[10]  R. Ellis,et al.  Large deviations and statistical mechanics , 1985 .

[11]  G. Papanicolaou Some probabilistic problems and methods in singular perturbations , 1976 .

[12]  G. Stoltz,et al.  THEORETICAL AND NUMERICAL COMPARISON OF SOME SAMPLING METHODS FOR MOLECULAR DYNAMICS , 2007 .

[13]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[14]  F. W. Wiegel,et al.  BROWNIAN MOTION IN A FIELD OF FORCE , 1986 .

[15]  G. Ciccotti,et al.  Projection of diffusions on submanifolds: Application to mean force computation , 2008 .

[16]  E. Olivieri,et al.  Large deviations and metastability: Large deviations and statistical mechanics , 2005 .

[17]  A. Si,et al.  Entropy,Large Deviations,and Statistical Mechanics , 2011 .

[18]  Eric Vanden Eijnden,et al.  Metastability, conformation dynamics, and transition pathways in complex systems , 2004 .

[19]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[20]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[21]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[22]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[23]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .

[24]  S. Varadhan Large Deviations and Applications , 1984 .

[25]  E. Vanden-Eijnden,et al.  Metastability, conformation dynamics, and transition pathways in complex systems , 2004 .

[26]  G. Ciccotti,et al.  String method in collective variables: minimum free energy paths and isocommittor surfaces. , 2006, The Journal of chemical physics.

[27]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[28]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[29]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[30]  Editors , 1986, Brain Research Bulletin.

[31]  C. Villani Topics in Optimal Transportation , 2003 .

[32]  I. Gyöngy Mimicking the one-dimensional marginal distributions of processes having an ito differential , 1986 .