Polymers for Biomedical Applications: Improvement of the Interface Compatibility

The true aim of biomaterials research is to create implant surfaces which interact actively with the biological system and provoke exactly the same reactions as the corporal tissues do. The improvement in the interface compatibility of polymers selected for implantation by directed surface modification is an important contribution to biomaterial development. Different polymer properties are adjusted and characterized independently of the carrier polymer by means of introduction of modern surface analytical methods and surface techniques. In addition, the interactions between the modified polymer surface and the biological system are measured. In this way, the hydrophilization of a polyurethane (Tecoflex™) and a poly(ether sulfone) by plasma induced graftcopolymerization of hydrogels like poly (hydroxyethyl methacrylate) leads to improved blood compatibility. Functionalization by means of SO2 plasma treatment of medical grade poly(vinyl chloride) increases the adsorption of the basal membrane protein fibronectin, which correlates with an improvement in cell growth. A suitable interface for an improved cell growth of human vascular endothelial cells as well as for cornea endothelial cells has been created by immobilization of the cell adhesion mediator fibronectin using bifunctional spacer molecules at several carrier polymer surfaces like smooth poly(vinyl chloride), modified polyurethane, Tecoflex™ and poly (dimethyl siloxane).

[1]  Y. Ikada,et al.  Cell adhesion to plasma-treated polymer surfaces , 1993 .

[2]  E. Salzman Interaction of the blood with natural and artificial surfaces , 1981 .

[3]  Y. Ikada Blood-compatible polymers , 1984 .

[4]  T. Saba Plasma fibronectin. , 1986, British journal of hospital medicine.

[5]  D. Klee,et al.  Immobilization of a fibronectin fragment at the surface of a polyetherurethane film , 1991 .

[6]  W. Norde,et al.  Proton titration and electrokinetic studies of adsorbed protein layers , 1985 .

[7]  E. Harlow,et al.  Antibodies: A Laboratory Manual , 1988 .

[8]  H. Gräf,et al.  [Immobilized enzymes]. , 1977, Pharmazie in unserer Zeit.

[9]  D. Klee,et al.  Surface modification of a new flexible polymer with improved cell adhesion , 1994 .

[10]  J. Andrade Surface and Interfacial Aspects of Biomedical Polymers , 1985 .

[11]  L. Robeson,et al.  Chapter 3 – Methods for Determining Polymer—Polymer Miscibility , 1979 .

[12]  D. Klee,et al.  Surface analysis of PP/EVA blends modified with amino acids for biomedical applications , 1995 .

[13]  J. Andrade,et al.  Flat plate streaming potential investigations: Hydrodynamics and electrokinetic equivalency , 1980 .

[14]  J. Andrade,et al.  Blood-materials interactions: the minimum interfacial free energy and the optimum polar/apolar ratio hypotheses. , 1982, Journal of biomedical materials research.

[15]  H. Nygren,et al.  Molecular and supramolecular structure of adsorbed fibrinogen and adsorption isotherms of fibrinogen at quartz surfaces. , 1988, Journal of biomedical materials research.

[16]  J. Andrade Hydrogels for medical and related applications , 1976 .

[17]  B D Ratner,et al.  New ideas in biomaterials science--a path to engineered biomaterials. , 1993, Journal of biomedical materials research.

[18]  Timothy W. Wright,et al.  Definitions in Biomaterials , 1989 .

[19]  L. Vroman Methods of Investigating Protein Interactions on Artificial and Natural Surfaces , 1987, Annals of the New York Academy of Sciences.

[20]  D. Williams,et al.  Tissue-biomaterial interactions , 1987 .

[21]  I. Sanchez Statistical Thermodynamics of Polymer Blends , 1978 .

[22]  T. Matsuura,et al.  Surface modification of polyethersulfone hollow-fiber membranes by γ-ray irradiation , 1994 .

[23]  Y. Ikada,et al.  Surface modifications of polyaniline films by graft copolymerization , 1992 .

[24]  Erkki Ruoslahti,et al.  Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule , 1984, Nature.

[25]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[26]  G. Müller,et al.  „Dynamischer Zwang”︁, eine Hilfe für das Verständnis der Aktivität und Selektivität von RGD(Arg‐Gly‐Asp)‐Peptiden , 1992 .

[27]  R. W. Phillips,et al.  Surface reactions of chlorine molecules and atoms with water and sulfuric acid at low temperatures , 1979 .

[28]  P. F. Onyon Polymer Handbook , 1972, Nature.

[29]  J. Feijen,et al.  A glow discharge treatment to immobilize poly(ethylene oxide)/poly(propylene oxide) surfactants for wettable and non-fouling biomaterials , 1992 .

[30]  W G Bardsley,et al.  The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. , 1975, The Biochemical journal.

[31]  A. Garton Infrared Spectroscopy of Polymer Blends, Composites and Surfaces , 1992 .

[32]  A. Hoffman,et al.  Surface characterization of a series of polyurethanes by X-ray photoelectron spectroscopy and contact angle methods. , 1990, Journal of biomaterials science. Polymer edition.

[33]  D. Watts,et al.  Concise encyclopedia of medical and dental materials , 1993 .

[34]  Ingemar Lundström,et al.  Protein exchange reactions on solid surfaces studied with a wettability gradient method , 1987 .

[35]  Alan G. Walton,et al.  Structural changes in proteins adsorbed on polymer surfaces , 1980 .

[36]  S. Krause Polymer-polymer miscibility , 1986 .

[37]  J. Porath,et al.  Covalent attachment of proteins to polysaccharide carriers by means of benzoquinone. , 1975, Biochimica et biophysica acta.

[38]  G. López,et al.  Plasma deposition of ultrathin films of poly(2−hydroxyethyl methacrylate) : surface analysis and protein adsorption measurements , 1993 .

[39]  J. J. Grote,et al.  Effect of implantation site on phagocyte/polymer interaction and fibrous capsule formation. , 1988, Biomaterials.

[40]  P. Bentley High Performance Biomaterials. A Comprehensive Guide to Medical and Pharmaceutical Applications , 1992 .

[41]  N. Heimburger,et al.  Blutgerinnung und Fibrinolyse , 1971 .

[42]  Joel H. Hildebrand,et al.  The solubility of nonelectrolytes , 1964 .

[43]  Stuart L. Cooper,et al.  Synthesis, surface, and cell-adhesion properties of polyurethanes containing covalently grafted RGD-peptides. , 1994 .

[44]  Stuart L. Cooper,et al.  Polyurethanes In Medicine , 1986 .

[45]  K. Birdi,et al.  Wettability and Contact Angles , 1984 .

[46]  Forbes Cd Thrombosis and artificial surfaces. , 1981, Clinics in haematology.

[47]  D. Briggs,et al.  Derivatization of discharge-treated LDPE: an extension of XPS analysis and a probe of specific interactions in adhesion , 1982 .

[48]  C. García-echeverría,et al.  Endothelial cell adhesion on polyurethanes containing covalently attached RGD-peptides. , 1992, Biomaterials.

[49]  Michael Szycher,et al.  Biocompatible polymers, metals, and composites , 1983 .

[50]  E Ruoslahti,et al.  Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Wahlgren,et al.  Protein adsorption to solid surfaces. , 1991, Trends in biotechnology.

[52]  W. Norde,et al.  Streaming potential measurements as a tool to study protein adsorption kinetics. , 1990 .

[53]  S. Dawids,et al.  Blood compatible materials and their testing , 1986 .

[54]  A. Keown Uremia Therapy , 1987, Springer Berlin Heidelberg.

[55]  J. Anderson,et al.  Effect of albumin coating on the in vitro blood compatibility of Dacron arterial prostheses. , 1989, Biomaterials.

[56]  N. Ziats,et al.  In vitro and in vivo interactions of cells with biomaterials. , 1988, Biomaterials.

[57]  Egon Matijević,et al.  Surface and Colloid Science , 1971 .

[58]  D. Briggs,et al.  Practical surface analysis: By auger and x-ray photoelectron spectroscopy , 1983 .

[59]  J. Andrade,et al.  Streaming potential investigations: Polymer thin films , 1981 .

[60]  J. Feijen,et al.  Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. , 1987, Biomaterials.

[61]  S. Srinivasan,et al.  Studies on the biophysics of intravascular thrombosis. , 1967, American journal of surgery.

[62]  Dongqing Li,et al.  Contact angles on hydrophobic solid surfaces and their interpretation , 1992 .

[63]  I. Lundström,et al.  Simple kinetic models for protein exchange reactions on solid surfaces , 1990 .

[64]  D. Warren Vidrine,et al.  Photoacoustic Fourier Transform Infrared (FTIR) Spectroscopy Of Solids , 1981, Other Conferences.

[65]  H. Handa,et al.  Blood compatibility of hydrophilic polymers. , 1981, Journal of biomedical materials research.

[66]  J. Lyklema Interfacial Electrochemistry of Surfaces with Biomedical Relevance , 1985 .

[67]  Y. Ikada,et al.  Dispersive component of surface free energy of hydrophilic polymers , 1981 .

[68]  H. Cantow Properties of polymers , 1980 .

[69]  G. W. Hastings,et al.  Book reviewDefinitions in Biomaterials: Progress in Biomedical Engineering 4, Editor: D.F. Williams. Elsevier, Amsterdam, 1987, pp viii + 72, US $63.50 , 1989 .

[70]  F. P. Pike,et al.  INTERFACIAL TENSION MEASUREMENT BY AN IMPROVED WILHELMY TECHNIQUE , 1976 .

[71]  J M Courtney,et al.  Blood interactions with novel polyurethaneurea hydrogels. , 1991, Biomaterials.

[72]  C. Forbes Thrombosis and artificial surfaces. , 1981, Clinics in haematology.

[73]  L. Thiele Isocyanatreaktionen und Katalyse in der Polyurethanchemie. Fortschrittsbericht , 1979 .

[74]  J. Andrade Hydrogels in medicine and pharmacy , 1989 .

[75]  S. Cooper,et al.  Surface characterization of plasma‐derivatized polyurethanes , 1991 .

[76]  S. Rostami,et al.  Multicomponent polymer systems , 1992 .

[77]  Bruce Stillman,et al.  Cold Spring Harbor Laboratory , 1995, Current Biology.

[78]  P. Painter,et al.  Specific interactions and miscibility of polymer blends , 1995 .

[79]  K. Mittal Treatise on clean surface technology , 1987 .

[80]  N. Peppas Hydrogels in Medicine and Pharmacy , 1987 .

[81]  D. F. Williams,et al.  Biocompatibility: Performance in the Surgical Reconstruction of Man , 1990 .

[82]  E Ruoslahti,et al.  Crystal structure of the tenth type III cell adhesion module of human fibronectin. , 1994, Journal of molecular biology.

[83]  G. Ciapetti,et al.  Comparative study of the thromboresistance of Dacron combined with various polyurethanes. , 1989, Biomaterials.

[84]  T. Okano,et al.  Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets. , 1981, Journal of biomedical materials research.

[85]  B. Ratner Graft Copolymer and Block Copolymer Surfaces , 1985 .

[86]  D. H. Kaelble,et al.  A surface energy analysis of bioadhesion , 1977 .

[87]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[88]  B. Ratner Biomedical Applications of Synthetic Polymers , 1989 .

[89]  D. Castner,et al.  Variations between Biomer lots. I. Significant differences in the surface chemistry of two lots of a commercial poly(ether urethane). , 1992, Journal of biomedical materials research.

[90]  Ernesto Occhiello,et al.  Polymer Surfaces: From Physics to Technology , 1994 .

[91]  E. Ruoslahti,et al.  Arg-Gly-Asp: A versatile cell recognition signal , 1986, Cell.

[92]  J. Feijen,et al.  Current Techniques to Improve the Blood Compatibility of Biomaterial Surfaces , 1991, The International journal of artificial organs.

[93]  A. Bloom Haemostasis and thrombosis , 1981 .

[94]  N. Jayakumari Blood-material interaction. , 1984, Biomaterials, medical devices, and artificial organs.

[95]  S. Fusselman,et al.  A growth mechanism for the vacuum deposition of polymeric materials , 1990 .

[96]  L. Vroman The importance of surfaces in contact phase reactions. , 1987, Seminars in thrombosis and hemostasis.

[97]  A. Hoffman,et al.  Blood‐compatibility‐water‐content relationships for radiation‐grafted hydrogels , 1979 .

[98]  B. Ratner Surface Contamination and Biomaterials , 1987 .

[99]  Joseph D. Andrade,et al.  Blood compatibility of polyethylene oxide surfaces , 1995 .

[100]  S. L. Shaffer,et al.  Adsorption of water on rhenium studied by XPS , 1983 .

[101]  M. B. Bever,et al.  Concise encyclopedia of medical & dental materials , 1990 .

[102]  Lawrence J. Fogel,et al.  Progress in Biomedical Engineering , 1967 .

[103]  J. Riga,et al.  Correlation between CdS photoanodic behaviour and electrode chemical modifications: An X-ray photoelectron spectroscopic study , 1985 .

[104]  N. Winograd,et al.  X-ray photoelectron spectra of some dirhodium carboxylate complexes , 1980 .

[105]  T. O'donnell,et al.  The effect of flow on vascular endothelial cells grown in tissue culture on polytetrafluoroethylene grafts. , 1986, Surgery.

[106]  E. Ruoslahti,et al.  Synthetic peptide with cell attachment activity of fibronectin. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Ludwig Wilhelmy Ueber die Abhängigkeit der Capillaritäts‐Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers , 1863 .

[108]  A. Bantjes Clotting Phenomena at the Blood‐Polymer Interface and Development of Blood Compatible Polymeric Surfaces , 1978 .

[109]  Hsiue Ging-Ho,et al.  Plasma-induced graft copolymerization of HEMA onto silicone rubber and TPX film improving rabbit corneal epithelial cell attachment and growth. , 1994 .

[110]  D. Grainger,et al.  Poly(dimethylsiloxane)-poly(ethylene oxide)-heparin block copolymers. III: Surface and bulk compositional differences. , 1990, Journal of biomedical materials research.

[111]  D. Chapman,et al.  Biomembranes as models for polymer surfaces. III. Characterization of a phosphorylcholine surface covalently bound to glass. , 1986, Biomaterials.

[112]  J M Courtney,et al.  Biomaterials for blood-contacting applications. , 1994, Biomaterials.

[113]  D. Clark Advances in ESCA applied to polymer characterization , 1982 .

[114]  I. Campbell,et al.  Fibronectin structure and assembly. , 1994, Current opinion in cell biology.