Self-diffusion coefficient in smoothed dissipative particle dynamics.

Smoothed dissipative particle dynamics (SDPD) is a novel coarse grained method for the numerical simulation of complex fluids. It has considerable advantages over more traditional particle-based methods. In this paper we analyze the self-diffusion coefficient D of a SDPD solvent by using the strategy proposed by Groot and Warren [J. Chem. Phys. 107, 4423 (1997)]. An analytical expression for D in terms of the model parameters is developed and verified by numerical simulations.

[1]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[2]  P. B. Warren,et al.  Kinetic theory for dissipative particle dynamics: The importance of collisions , 1999 .

[3]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[4]  Stephan Kabelac,et al.  Transport coefficients of the Lennard-Jones model fluid. II Self-diffusion. , 2004, The Journal of chemical physics.

[5]  George Em Karniadakis,et al.  Schmidt number effects in dissipative particle dynamics simulation of polymers. , 2006, The Journal of chemical physics.

[6]  J. Jiménez,et al.  Boltzmann Approach to Lattice Gas Simulations , 1989 .

[7]  Y. Pomeau,et al.  Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions , 1976 .

[8]  G. Karniadakis,et al.  Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems. , 2006, The Journal of chemical physics.

[9]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[10]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[11]  Pep Español,et al.  Smoothed dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[13]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[14]  Hiroshi Noguchi,et al.  Transport coefficients of dissipative particle dynamics with finite time step , 2007, 0705.3317.

[15]  T. Ihle,et al.  Erratum: Multi-particle collision dynamics: Flow around a circular and a square cylinder , 2001, cond-mat/0110148.

[16]  Thermodynamically Admissible Form for Discrete Hydrodynamics , 1999, cond-mat/9901101.

[17]  C. A. Marsh,et al.  Fokker-Planck-Boltzmann equation for dissipative particle dynamics , 1997 .

[18]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[19]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[20]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[21]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..

[22]  Pep Español,et al.  Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. , 2009, The Journal of chemical physics.