Selective vapor phase sensing of small molecules using biofunctionalized field effect transistors

This work details a proof of concept study for vapor phase selective sensing using a strategy of biorecognition elements (BRE) integrated into a zinc oxide field effect transistor (ZnO FET). ZnO FETs are highly sensitive to changes to the environment with little to no selectivity. Addition of a biorecognition element retains the sensitivity of the device while adding selectivity. The DNA aptamer designed to bind the small molecule riboflavin was covalently integrated into the ZnO FET and detects the presence of 116 ppb of riboflavin in a nitrogen atmosphere by a change in current. The unfunctionalized ZnO FET shows no response to this same concentrations of riboflavin, showing that the aptamerbinding strategy may be a promising strategy for vapor phase sensing.

[1]  Biao Chang,et al.  QUARTZ CRYSTAL MICROBALANCE STUDY OF DNA IMMOBILIZATION AND HYBRIDIZATION FOR DNA SENSOR DEVELOPMENT , 2008 .

[2]  A. Star,et al.  Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors , 2007 .

[3]  R. Nelson,et al.  BIA/MS: interfacing biomolecular interaction analysis with mass spectrometry. , 1997, Analytical biochemistry.

[4]  J W Szostak,et al.  RNA aptamers that bind flavin and nicotinamide redox cofactors. , 1995, Journal of the American Chemical Society.

[5]  D G Myszka,et al.  Advances in surface plasmon resonance biosensor analysis. , 2000, Current opinion in biotechnology.

[6]  F. Caruso,et al.  Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic Acid sensor development. , 1997, Analytical chemistry.

[7]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[8]  S. Manalis,et al.  Micromechanical detection of proteins using aptamer-based receptor molecules. , 2004, Analytical chemistry.

[9]  Burhan Bayraktaroglu,et al.  DNA aptamer functionalized zinc oxide field effect transistors for liquid state selective sensing of small molecules , 2010, NanoScience + Engineering.

[10]  D. Janes,et al.  Effects of bias stress on ZnO nanowire field-effect transistors fabricated with organic gate nanodielectrics , 2006 .

[11]  M. Roukes,et al.  Toward single-molecule nanomechanical mass spectrometry , 2005, Nature nanotechnology.

[12]  R. Naik,et al.  Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. , 2010, ACS nano.

[13]  Itamar Willner,et al.  Electronic aptamer-based sensors. , 2007, Angewandte Chemie.

[14]  R. Nelson,et al.  Surface plasmon resonance mass spectrometry: recent progress and outlooks. , 2003, Trends in biotechnology.

[15]  Itamar Willner,et al.  Biomaterials for Sensors, Fuel Cells, and Circuitry , 2002, Science.

[16]  W. Lyon,et al.  Theophylline detection using an aptamer and DNA-gold nanoparticle conjugates. , 2010, Biosensors & bioelectronics.

[17]  A. Heeger,et al.  Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. , 2005, Angewandte Chemie.

[18]  B. Bayraktaroglu,et al.  High-Frequency ZnO Thin-Film Transistors on Si Substrates , 2009, IEEE Electron Device Letters.

[19]  Milan N Stojanovic,et al.  Aptamer-based colorimetric probe for cocaine. , 2002, Journal of the American Chemical Society.

[20]  C. O’Sullivan Aptasensors – the future of biosensing? , 2002, Analytical and bioanalytical chemistry.

[21]  A. Hamilton,et al.  Peptide and protein recognition by designed molecules. , 2000, Chemical reviews.

[22]  K. Jensen,et al.  An atomic-resolution nanomechanical mass sensor. , 2008, Nature Nanotechnology.

[23]  A. Yergey,et al.  Mass spectrometry after capture and small-volume elution of analyte from a surface plasmon resonance biosensor. , 2002, Analytical Chemistry.