The fundamental solution on manifolds with time-dependent metrics
暂无分享,去创建一个
[1] M. Carfora,et al. Convergence of the Ricci flow for metrics with indefinite Ricci curvature , 1990 .
[2] A. S. Kalashnikov,et al. LINEAR EQUATIONS OF THE SECOND ORDER OF PARABOLIC TYPE , 1962 .
[3] S. Éidel'man,et al. Two-sided estimates of fundamental solutions of second-order parabolic equations, and some applications , 1984 .
[4] R. Hamilton. Three-manifolds with positive Ricci curvature , 1982 .
[5] R. Hamilton. Four-manifolds with positive curvature operator , 1986 .
[6] S. Yau,et al. On the parabolic kernel of the Schrödinger operator , 1986 .
[7] R. Hamilton,et al. The formations of singularities in the Ricci Flow , 1993 .
[8] D. Aronson,et al. Bounds for the fundamental solution of a parabolic equation , 1967 .
[9] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[10] D. Bakry,et al. Harnack inequalities on a manifold with positive or negative Ricci curvature , 1999 .
[11] S. Minakshisundaram,et al. Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds , 1949, Canadian Journal of Mathematics.