Identification, control and hysteresis compensation of a 3 DOF metrological AFM
暂无分享,去创建一个
M Maarten Steinbuch | R. Merry | René van de Molengraft | Marijn van Veghel | Mustafa Uyanik | Richard Koops | M. Steinbuch | R. van de Molengraft | R. Koops | M. V. van Veghel | R. Merry | M. Uyanik
[1] Mervyn J Miles,et al. A mechanical microscope: High speed atomic force microscopy , 2005 .
[2] Kai Dirscherl,et al. Online correction of scanning probe microscopes with pixel accuracy , 2000 .
[3] L.Y. Pao,et al. Combined Feedforward/Feedback Control of Atomic Force Microscopes , 2007, 2007 American Control Conference.
[4] Frank Allgöwer,et al. Control Strategies Towards Faster Quantitative Imaging in Atomic Force Microscopy , 2005, Eur. J. Control.
[5] F. Allgöwer,et al. High performance feedback for fast scanning atomic force microscopes , 2001 .
[6] Srinivasa M. Salapaka,et al. Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.
[7] Armen Der Kiureghian,et al. Generalized Bouc-Wen model for highly asymmetric hysteresis , 2006 .
[8] Jacqueline A. Cutroni,et al. Rigid design of fast scanning probe microscopes using finite element analysis. , 2004, Ultramicroscopy.
[9] Gerber,et al. Atomic Force Microscope , 2020, Definitions.
[10] G. Schitter. Advanced Mechanical Design and Control Methods for Atomic Force Microscopy in Real-Time , 2007, 2007 American Control Conference.
[11] K. Dirscherl,et al. Modeling the hysteresis of a scanning probe microscope , 2000 .
[12] B. D. Coleman,et al. A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials , 1986 .
[13] Qingze Zou,et al. Preview-based optimal inversion for output tracking: application to scanning tunneling microscopy , 2004, IEEE Transactions on Control Systems Technology.
[14] Chih-Jer Lin,et al. PRECISE POSITIONING OF PIEZO-ACTUATED STAGES USING HYSTERESIS-OBSERVER BASED CONTROL , 2005 .
[15] Qiang Yang,et al. Hysteresis correction in the curvature adaptive optics system. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.
[16] Murti V. Salapaka,et al. Preisach model for quantifying hysteresis in an atomic force microscope , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.
[17] Chih-Jer Lin,et al. PRECISE POSITIONING OF PIEZO-ACTUATED STAGES USING HYSTERESIS-OBSERVER BASED CONTROL , 2006 .
[18] S. O. Reza Moheimani,et al. Piezoelectric Transducers for Vibration Control and Damping , 2006 .
[19] Ming-Jyi Jang,et al. Modeling and control of a piezoelectric actuator driven system with asymmetric hysteresis , 2009, J. Frankl. Inst..
[20] Maarten Steinbuch,et al. Modeling, identification and control of a metrological Atomic Force Microscope with a 3DOF stage , 2008, 2008 American Control Conference.
[21] Ian Postlethwaite,et al. Multivariable Feedback Control: Analysis and Design , 1996 .
[22] B Samali,et al. Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. , 2007, ISA transactions.
[23] Paul K. Hansma,et al. DESIGN AND CHARACTERIZATION OF A NOVEL SCANNER FOR HIGH-SPEED ATOMIC FORCE MICROSCOPY , 2006 .
[24] Murti V. Salapaka,et al. Piezoelectric scanners for atomic force microscopes: design of lateral sensors, identification and control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).
[25] Murti V. Salapaka,et al. Design, identification and control of a fast nanopositioning device , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).
[26] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[27] E. Bristol. On a new measure of interaction for multivariable process control , 1966 .