A Posteriori Error Estimates for the Mortar Mixed Finite Element Method

Several a posteriori error estimators for mortar mixed finite element discretizations of elliptic equations are derived. A residual-based estimator provides optimal upper and lower bounds for the pressure error. An efficient and reliable estimator for the velocity and mortar pressure error is also derived, which is based on solving local (element) problems in a higher-order space. The interface flux-jump term that appears in the estimators can be used as an indicator for driving an adaptive process for the mortar grids only.

[1]  Ivan Yotov,et al.  Mixed finite element methods for flow in porous media , 1996 .

[2]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[3]  Jan Brandts Superconvergence and a posteriori error estimation for triangular mixed finite elements , 1994 .

[4]  Denise Ferembach Vandermeersch (В.). — Les hommes fossiles de Qafzeh (Israël). Thèse de Doctorat d'Etat es Sciences. Université Pierre et Marie Curie. , 1977 .

[5]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[6]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[7]  Barbara I. Wohlmuth,et al.  A residual based error estimator for mortar finite element discretizations , 1999, Numerische Mathematik.

[8]  Faker Ben THE MIXED MORTAR FINITE ELEMENT METHOD FOR THE INCOMPRESSIBLE STOKES PROBLEM: CONVERGENCE ANALYSIS* , 2000 .

[9]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[10]  Mary F. Wheeler,et al.  Physical and Computational Domain Decompositions for Modeling Subsurface Flows , 2007 .

[11]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[12]  Ronald H. W. Hoppe,et al.  Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems , 1997 .

[13]  J. Douglas,et al.  Prismatic mixed finite elements for second order elliptic problems , 1989 .

[14]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[15]  Gergina Pencheva,et al.  Balancing domain decomposition for mortar mixed finite element methods , 2003, Numer. Linear Algebra Appl..

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[18]  Mary F. Wheeler,et al.  Mortar Upscaling for Multiphase Flow in Porous Media , 2002 .

[19]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[20]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[21]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[22]  Barbara Wohlmuth,et al.  Hierarchical A Posteriori Error Estimators for Mortar Finite Element Methods with Lagrange Multipliers , 1999 .

[23]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[24]  Todd Arbogast,et al.  Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..

[25]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[26]  Robert C. Kirby Residual a Posteriori Error Estimates for the Mixed Finite Element Method , 2003 .

[27]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[28]  Barbara I. Wohlmuth,et al.  A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements , 1999, Math. Comput..

[29]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[30]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[31]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[32]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[33]  D. Arnold Mixed finite element methods for elliptic problems , 1990 .

[34]  I. Yotov,et al.  Mixed Finite Element Methods on Non-Matching Multiblock Grids , 1996 .

[35]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[36]  D. Evelyne Thèse de doctorat d'Etat , 1988 .

[37]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[38]  Dietrich Braess,et al.  A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .