An almost quadratic bound on vertex Folkman numbers

The vertex Folkman number F(r,n,m), n0 we derive the linear upper bound when the cliques bigger than (2+@e)n are forbidden.

[1]  Béla Bollobás,et al.  Graphs without large triangle free subgraphs , 1991, Discret. Math..

[2]  Paul Erdös,et al.  Topics in the Theory of Numbers , 2003 .

[3]  Michael Krivelevich,et al.  Ks-Free Graphs Without Large Kr-Free Subgraphs , 1994, Combinatorics, Probability and Computing.

[4]  Vojtech Rödl,et al.  A Canonical Ramsey Theorem , 1992, Random Struct. Algorithms.

[5]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[6]  Nikolay Rangelov Kolev,et al.  New Upper Bound for a Class of Vertex Folkman Numbers , 2006, Electron. J. Comb..

[7]  Felix Lazebnik,et al.  Polarities and 2k-cycle-free graphs , 1999, Discret. Math..

[8]  Vojtech Rödl,et al.  A ramsey type problem concerning vertex colourings , 1991, J. Comb. Theory, Ser. B.

[9]  Béla Bollobás,et al.  Random Graphs , 1985 .

[10]  Paul Erdös,et al.  The Construction of Certain Graphs , 1966, Canadian Journal of Mathematics.

[11]  V. Rödl,et al.  The Ramsey property for graphs with forbidden complete subgraphs , 1976 .

[12]  Joseph A. Thas,et al.  Chapter 9 – Generalized Polygons , 1995 .

[13]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[14]  Alan M. Frieze,et al.  On the independence number of random graphs , 1990, Discret. Math..

[15]  James B. Shearer,et al.  A note on the independence number of triangle-free graphs , 1983, Discret. Math..

[16]  Andrzej Rucinski,et al.  On minimal Folkman graphs , 2001, Discret. Math..

[17]  J. Folkman Graphs with Monochromatic Complete Subgraphs in Every Edge Coloring , 1970 .

[18]  Benny Sudakov Large K r -free subgraphs in K s -free graphs and some other Ramsey-type problems , 2005 .

[19]  Stanislaw Radziszowski,et al.  Computing the Folkman number F_v(2,2,3;4) , 2006 .

[20]  Andrzej Dudek,et al.  New Upper Bound on Vertex Folkman Numbers , 2008, LATIN.