MIR-Pump NIR-Probe Fiber-Optic Photothermal Spectroscopy With Background-Free First Harmonic Detection

We demonstrated MIR-pump NIR-probe photothermal spectroscopy with the first harmonic (PTS-<inline-formula> <tex-math notation="LaTeX">$1{f}$ </tex-math></inline-formula>) detection of formaldehyde, one of the most common volatile organic compounds (VOCs), in a silica hollow-core negative curvature fiber (HC-NCF). The photothermal gas sensor adopts a mid-infrared interband cascade pump laser at <inline-formula> <tex-math notation="LaTeX">$3.6~\mu \text{m}$ </tex-math></inline-formula> and a near-infrared fiber probe laser at <inline-formula> <tex-math notation="LaTeX">$1.56~\mu \text{m}$ </tex-math></inline-formula>. At the optimal modulation frequency (8 kHz) and modulation index (1.8) of the pump laser, we obtained a normalized noise equivalent absorption (NNEA) coefficient of <inline-formula> <tex-math notation="LaTeX">$4\times 10^{-9}$ </tex-math></inline-formula> cm<sup>−1</sup>WHz<inline-formula> <tex-math notation="LaTeX">$^{-1/2}$ </tex-math></inline-formula>. The use of HC-NCF with an inner diameter of <inline-formula> <tex-math notation="LaTeX">$65~\mu \text{m}$ </tex-math></inline-formula> enables the sensitive photothermal detection even for a very low pump power of micro-watts. The background-free PTS-<inline-formula> <tex-math notation="LaTeX">$1{f}$ </tex-math></inline-formula> detection was observed to enhance the sensitivity by a factor of 2.4 compared to the second harmonic (<inline-formula> <tex-math notation="LaTeX">$2{f}$ </tex-math></inline-formula>) detection. A theoretical model was established in this work to interpret the experimental results.

[1]  Tao Zhu,et al.  Photothermal Interferometry Gas Sensor Based on the First Harmonic Signal , 2018, IEEE Photonics Journal.

[2]  Jun Ma,et al.  Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre , 2016, Scientific Reports.

[3]  Wei Jin,et al.  Modeling and performance evaluation of in-line Fabry-Perot photothermal gas sensors with hollow-core optical fibers. , 2020, Optics express.

[4]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[5]  R. Dickerson,et al.  A photothermal interferometer for gas-phase ammonia detection. , 1999, Analytical chemistry.

[6]  Walter Belardi,et al.  Design and Properties of Hollow Antiresonant Fibers for the Visible and Near Infrared Spectral Range , 2015, Journal of Lightwave Technology.

[7]  O. Axner,et al.  Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. , 1999, Applied optics.

[8]  Pu Wang,et al.  High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber. , 2018, Optics express.

[9]  W. Jin,et al.  Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range , 2015, Nature Communications.

[10]  M. Hong,et al.  Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast. , 2015, Optics letters.

[11]  C C Davis,et al.  Phase fluctuation optical heterodyne spectroscopy of gases. , 1981, Applied optics.

[12]  Qiang Wang,et al.  Photothermal CO detection in a hollow-core negative curvature fiber. , 2019, Optics letters.

[13]  C. Roller,et al.  Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde , 2006 .

[14]  Shangchun Fan,et al.  Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber , 2020, Nature Communications.

[15]  Wei Jin,et al.  Mid-infrared fiber-optic photothermal interferometry. , 2017, Optics letters.

[16]  B. Lendl,et al.  Balanced-detection interferometric cavity-assisted photothermal spectroscopy. , 2019, Optics express.

[17]  W. Jin,et al.  Silica Hollow-Core Negative Curvature Fibers Enable Ultrasensitive Mid-Infrared Absorption Spectroscopy , 2020, Journal of Lightwave Technology.

[18]  Hejie Li,et al.  Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. , 2006, Applied optics.

[19]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[20]  Wei Ding,et al.  Hollow-core conjoined-tube negative-curvature fibre with ultralow loss , 2018, Nature Communications.

[21]  Ronald K. Hanson,et al.  Measurements of near-IR water vapor absorption at high pressure and temperature , 2007 .

[22]  Duncan P. Hand,et al.  Negative-Curvature Anti-Resonant Fiber Coupling Tolerances , 2019, Journal of Lightwave Technology.

[23]  Ke Chen,et al.  An auto-correction laser photoacoustic spectrometer based on 2f/1f wavelength modulation spectroscopy. , 2019, The Analyst.