Numerical solution of an inverse reaction–diffusion problem via collocation method based on radial basis functions

[1]  B. Jones Various methods for finding unknown coefficients in parabolic differential equations , 1963 .

[2]  J. Cannon Determination of an unknown coefficient in a parabolic differential equation , 1963 .

[3]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[4]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[5]  R. Franke A Critical Comparison of Some Methods for Interpolation of Scattered Data , 1979 .

[6]  T. Liszka An interpolation method for an irregular net of nodes , 1984 .

[7]  B. Blackwell,et al.  Inverse Heat Conduction: Ill-Posed Problems , 1985 .

[8]  John R. Cannon,et al.  A class of non-linear non-classical parabolic equations , 1989 .

[9]  John R. Cannon,et al.  Numerical solutions of some parabolic inverse problems , 1990 .

[10]  Victor Isakov,et al.  Inverse Source Problems , 1990 .

[11]  W. Chew,et al.  Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.

[12]  Yanping Lin,et al.  An inverse problem of finding a parameter in a semi-linear heat equation , 1990 .

[13]  William Rundell,et al.  Recovering a time dependent coefficient in a parabolic differential equation , 1991 .

[14]  John R. Cannon,et al.  On a class of nonlinear parabolic equations with nonlinear trace type functionals , 1991 .

[15]  R. E. Carlson,et al.  Interpolation of track data with radial basis methods , 1992 .

[16]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[17]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[18]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[19]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[20]  H. Yin Solvability of a class of parabolic inverse problems , 1996 .

[21]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[22]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[23]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[24]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[25]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[26]  Michael A. Golberg,et al.  Some recent results and proposals for the use of radial basis functions in the BEM , 1999 .

[27]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[28]  Christ Glorieux,et al.  The determination of electrical conductivity profiles using neural network inversion of multi-frequency eddy-current data , 1999 .

[29]  Mehdi Dehghan,et al.  An inverse problem of finding a source parameter in a semilinear parabolic equation , 2001 .

[30]  B. CANUTO,et al.  Determining Coefficients in a Class of Heat Equations via Boundary Measurements , 2001, SIAM J. Math. Anal..

[31]  Wu Zong-min,et al.  Radial Basis Function Scattered Data Interpolation and the Meshless Method of Numerical Solution of PDEs , 2002 .

[32]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[33]  H. Ding,et al.  Solution of partial differential equations by a global radial basis function-based differential quadrature method , 2004 .

[34]  Jichun Li,et al.  Application of radial basis meshless methods to direct and inverse biharmonic boundary value problems , 2004 .

[35]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[36]  Jichun Li,et al.  A radial basis meshless method for solving inverse boundary value problems , 2004 .

[37]  Mehdi Dehghan,et al.  Identification of a time‐dependent coefficient in a partial differential equation subject to an extra measurement , 2005 .

[38]  Mehdi Dehghan,et al.  Parameter determination in a partial differential equation from the overspecified data , 2005, Math. Comput. Model..

[39]  M. Dehghan,et al.  Solution of a parabolic equation with a time-dependent coefficient and an extra measurement using the decomposition procedure of adomian , 2005 .

[40]  Johannes Müller,et al.  A Course in Mathematical Biology , 2006 .

[41]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[42]  Mehdi Dehghan,et al.  Recovering a time‐dependent coefficient in a parabolic equation from overspecified boundary data using the pseudospectral Legendre method , 2007 .

[43]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[44]  Mehdi Dehghan,et al.  Direct numerical method for an inverse problem of a parabolic partial differential equation , 2009, J. Comput. Appl. Math..

[45]  Siraj-ul-Islam,et al.  Application of meshfree collocation method to a class of nonlinear partial differential equations. , 2009 .

[46]  Mehdi Dehghan,et al.  A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions , 2009, Numerical Algorithms.

[47]  Mehdi Dehghan,et al.  The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement , 2010, J. Comput. Appl. Math..

[48]  F. Davoodi,et al.  Control parameter estimation in a semi-linear parabolic inverse problem using a high accurate method , 2011, Appl. Math. Comput..

[49]  V. Borukhov,et al.  Identification of time-dependent coefficients of heat transfer by the method of suboptimal stage-by-stage optimization , 2013 .

[50]  Wen Chen,et al.  Recent Advances in Radial Basis Function Collocation Methods , 2013 .

[51]  Daniel Lesnic,et al.  Simultaneous determination of time-dependent coefficients in the heat equation , 2014, Comput. Math. Appl..