Unravelling the effects of layered supports on Ru nanoparticles for enhancing N2 reduction in photocatalytic ammonia synthesis

[1]  Yasuhiro Shiraishi,et al.  Nitrogen Fixation with Water on Carbon-Nitride-Based Metal-Free Photocatalysts with 0.1% Solar-to-Ammonia Energy Conversion Efficiency , 2018, ACS Applied Energy Materials.

[2]  T. Pandiyan,et al.  MCSCF-MRMP2 and DFT Exploratory Study on the Stability of Possible Intermediates in the Ru(H2O)6(2+) + H2O2 Reaction: Importance of the Multiconfigurational Character in the Description of the Ru=O Moiety , 2017 .

[3]  Jinhua Ye,et al.  Light‐Switchable Oxygen Vacancies in Ultrafine Bi5O7Br Nanotubes for Boosting Solar‐Driven Nitrogen Fixation in Pure Water , 2017, Advanced materials.

[4]  Z. Mi,et al.  Nitrogen Photofixation over III-Nitride Nanowires Assisted by Ruthenium Clusters of Low Atomicity. , 2017, Angewandte Chemie.

[5]  Wei‐De Zhang,et al.  Enhancing visible light photocatalytic activity of nitrogen-deficient g-C3N4 via thermal polymerization of acetic acid-treated melamine. , 2017, Journal of colloid and interface science.

[6]  K. Aika Role of alkali promoter in ammonia synthesis over ruthenium catalysts—Effect on reaction mechanism , 2017 .

[7]  Lizhi Zhang,et al.  Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides. , 2017, Accounts of chemical research.

[8]  Jinhua Ye,et al.  Engineering the Edges of MoS2 (WS2) Crystals for Direct Exfoliation into Monolayers in Polar Micromolecular Solvents. , 2016, Journal of the American Chemical Society.

[9]  Bin Hu,et al.  Electronic metal–support interactions enhance the ammonia synthesis activity over ruthenium supported on Zr-modified CeO2 catalysts , 2016 .

[10]  L. Gu,et al.  Interfacial electronic effects control the reaction selectivity of platinum catalysts. , 2016, Nature materials.

[11]  J. Peters,et al.  An Fe-N₂ Complex That Generates Hydrazine and Ammonia via Fe═NNH₂: Demonstrating a Hybrid Distal-to-Alternating Pathway for N₂ Reduction. , 2016, Journal of the American Chemical Society.

[12]  W. Ho,et al.  Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies , 2015 .

[13]  E. Skúlason,et al.  The Mechanism of Industrial Ammonia Synthesis Revisited: Calculations of the Role of the Associative Mechanism , 2015 .

[14]  M. Vrakking,et al.  Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields , 2015, Nature Communications.

[15]  H. Yamashita,et al.  New Method for the Synthesis of Ru Nanoparticles Using Photoexcited Fullerene C60-containing Mesoporous Silica as a Catalyst Support , 2015 .

[16]  Ali Jafari,et al.  Ruthenium Nanocatalysts for Ammonia Synthesis: A Review , 2015 .

[17]  H. Hosono,et al.  Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis , 2015, Nature Communications.

[18]  Y. Chabal,et al.  Structural band-gap tuning in g-C3N4. , 2014, Physical chemistry chemical physics : PCCP.

[19]  M. Hanfland,et al.  Pressure-induced chemistry in a nitrogen-hydrogen host–guest structure , 2014, Nature Communications.

[20]  Stuart Licht,et al.  Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3 , 2014, Science.

[21]  Thomas Bligaard,et al.  Assessing the reliability of calculated catalytic ammonia synthesis rates , 2014, Science.

[22]  Xihong Peng,et al.  Edge effects on the electronic properties of phosphorene nanoribbons , 2014, 1404.5995.

[23]  H. Fu,et al.  Enhanced Visible Activities of α-Fe2O3 by Coupling N-Doped Graphene and Mechanism Insight , 2014 .

[24]  Robert Schlögl,et al.  The Haber-Bosch process revisited: on the real structure and stability of "ammonia iron" under working conditions. , 2013, Angewandte Chemie.

[25]  Jianxin Lin,et al.  Highly effective perovskite-type BaZrO3 supported Ru catalyst for ammonia synthesis , 2013 .

[26]  P. Ajayan,et al.  Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light , 2013, Advanced materials.

[27]  Yongsheng Zhu,et al.  Layered nanojunctions for hydrogen-evolution catalysis. , 2013, Angewandte Chemie.

[28]  Bicai Pan,et al.  Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. , 2013, Journal of the American Chemical Society.

[29]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[30]  H. Hosono,et al.  Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. , 2012, Nature chemistry.

[31]  J. Xu,et al.  A Strategy of Enhancing the Photoactivity of g-C3N4 via Doping of Nonmetal Elements: A First-Principles Study , 2012 .

[32]  Roel van de Krol,et al.  Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: role of oxygen vacancies and iron dopant. , 2012, Journal of the American Chemical Society.

[33]  Hui‐Ming Cheng,et al.  Nitrogen Vacancy-Promoted Photocatalytic Activity of Graphitic Carbon Nitride , 2012 .

[34]  Y. Kawazoe,et al.  Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs. , 2012, Journal of nanoscience and nanotechnology.

[35]  R. Ruoff,et al.  Hydrazine-reduction of graphite- and graphene oxide , 2011 .

[36]  S. Tussupbayev,et al.  Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand. , 2011, Nature chemistry.

[37]  Xiulian Pan,et al.  The effects of confinement inside carbon nanotubes on catalysis. , 2011, Accounts of chemical research.

[38]  S. Shaik,et al.  How to conceptualize catalytic cycles? The energetic span model. , 2011, Accounts of chemical research.

[39]  Qing Tang,et al.  How Do Surface and Edge Effects Alter the Electronic Properties of GaN Nanoribbons , 2011 .

[40]  M. Antonietti,et al.  Making MetalCarbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light , 2010 .

[41]  Z. Mazej,et al.  Polymorphism of Fluoroargentates(II): Facile Collapse of a Layered Network of α-K2AgF4 Due to the Insufficient Size of the Potassium Cation† , 2010 .

[42]  Takahiro Yamada,et al.  Density Functional Theory Investigation of the Interaction between Nitrile Rubber and Fuel Species , 2009 .

[43]  S. Dai,et al.  First principles study of the graphene/Ru(0001) interface. , 2009, The Journal of chemical physics.

[44]  R. Schlögl,et al.  Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts , 2008 .

[45]  W. Winiwarter,et al.  How a century of ammonia synthesis changed the world , 2008 .

[46]  Wei Chen,et al.  Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. , 2008, Journal of the American Chemical Society.

[47]  J. Nørskov,et al.  Ammonia Synthesis from First-Principles Calculations , 2005, Science.

[48]  Robert J. Davis,et al.  Use of kinetic models to explore the role of base promoters on Ru/MgO ammonia synthesis catalysts , 2004 .

[49]  K. Domen,et al.  Exfoliated nanosheets as a new strong solid acid catalyst. , 2003, Journal of the American Chemical Society.

[50]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[51]  J. Nørskov,et al.  Nitrogen Adsorption and Dissociation on Fe(111) , 1999 .

[52]  Fujita,et al.  Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. , 1996, Physical review. B, Condensed matter.

[53]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[54]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[55]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[56]  J. Davies,et al.  An investigation of the putative photosynthesis of ammonia on iron-doped titania and other metal oxides , 1995 .

[57]  P. Natarajan,et al.  Photocatalytic reduction of nitrogen over (Fe, Ru or Os)/TiO2 catalysts , 1994 .

[58]  J. Bolin,et al.  Nitrogenase metalloclusters: structures, organization, and synthesis , 1993, Journal of bacteriology.

[59]  D. Wood Classical size dependence of the work function of small metallic spheres , 1981 .

[60]  G. Schrauzer,et al.  Photolysis of water and photoreduction of nitrogen on titanium dioxide , 1977 .

[61]  Lizhi Zhang,et al.  New Opportunities Opened by Nanosheets photocatalysts for Efficient N2 fixation , 2018 .

[62]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[63]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .