The Core and Pan-Genome of the Vibrionaceae

Species of the family Vibrionaceae are ubiquitous in marine environments and the family contains numerous important pathogens of humans and marine species. In order to find the core, accessory and pan-proteome of this family, we deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 groups of orthologs, which is 28% of the 6,629 orthologous groups in this family. The composition of the proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes.

[1]  S. Faruque,et al.  Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area: tracking the evolution of pathogenic strains. , 2008, DNA and cell biology.

[2]  Erin Beck,et al.  The comprehensive microbial resource , 2000, Nucleic Acids Res..

[3]  Fangfang Xia,et al.  The National Microbial Pathogen Database Resource (NMPDR): a genomics platform based on subsystem annotation , 2006, Nucleic Acids Res..

[4]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[5]  Young Ran Kim,et al.  Characterization and Pathogenic Significance of Vibrio vulnificus Antigens Preferentially Expressed in Septicemic Patients , 2003, Infection and Immunity.

[6]  Evan Powell,et al.  Comparative Genomic Analyses of Seventeen Streptococcus pneumoniae Strains: Insights into the Pneumococcal Supragenome , 2007, Journal of bacteriology.

[7]  Xiaohua Zhang,et al.  Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates , 2006, Letters in applied microbiology.

[8]  Fabiano L. Thompson,et al.  Biodiversity of Vibrios , 2004, Microbiology and Molecular Biology Reviews.

[9]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[10]  M. Stanhope,et al.  Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition , 2007, Genome Biology.

[11]  B. Birren,et al.  Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.

[12]  A. Weintraub,et al.  Vibrio cholerae O1 strains are facultative intracellular bacteria, able to survive and multiply symbiotically inside the aquatic free-living amoeba Acanthamoeba castellanii. , 2007, FEMS microbiology ecology.

[13]  Julian Parkhill,et al.  The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay , 2008, BMC Genomics.

[14]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[15]  E. Greenberg,et al.  Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  P. Gajer,et al.  The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates , 2008, Journal of bacteriology.

[17]  Jun Zhu,et al.  Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing , 2008, Proceedings of the National Academy of Sciences.

[18]  P. Dunlap,et al.  Phylogenetic Analysis of the Incidence of lux Gene Horizontal Transfer in Vibrionaceae , 2008, Journal of bacteriology.

[19]  S. Campanaro,et al.  Life at Depth: Photobacterium profundum Genome Sequence and Expression Analysis , 2005, Science.

[20]  Jaideep P. Sundaram,et al.  Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Igor B. Zhulin,et al.  MiST: a microbial signal transduction database , 2006, Nucleic Acids Res..

[22]  Julian Parkhill,et al.  Microbiology in the post-genomic era , 2008, Nature Reviews Microbiology.

[23]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[24]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[25]  A. T. Vasconcelos,et al.  Genomic taxonomy of vibrios , 2009, BMC Evolutionary Biology.

[26]  David R. Riley,et al.  Comparative genomics: the bacterial pan-genome. , 2008, Current opinion in microbiology.

[27]  G. Schoolnik,et al.  Genomic and Phenotypic Diversity of Coastal Vibrio cholerae Strains Is Linked to Environmental Factors , 2007, Applied and Environmental Microbiology.

[28]  G. Schoolnik,et al.  Chitin Induces Natural Competence in Vibrio cholerae , 2005, Science.

[29]  Masahira Hattori,et al.  Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae , 2003, The Lancet.

[30]  W. Qian,et al.  A Recalibrated Molecular Clock and Independent Origins for the Cholera Pandemic Clones , 2008, PloS one.

[31]  Katherine H. Huang,et al.  A novel method for accurate operon predictions in all sequenced prokaryotes , 2005, Nucleic acids research.

[32]  Shih-Feng Tsai,et al.  Comparative genome analysis of Vibrio vulnificus, a marine pathogen. , 2003, Genome research.

[33]  F. Thompson,et al.  Taxonomy of the Vibrios , 2006 .

[34]  S. Tasker,et al.  Bergey’s Manual of Systematic Bacteriology , 2010 .

[35]  Eugene V. Koonin,et al.  Comparative genomics, minimal gene-sets and the last universal common ancestor , 2003, Nature Reviews Microbiology.

[36]  R. Colwell,et al.  Global impact of Vibrio cholerae interactions with chitin. , 2008, Environmental microbiology.

[37]  D. Sack,et al.  Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area , 2004, Proceedings of the National Academy of Sciences of the United States of America.