Upwind and High-Resolution Methods for Compressible Flow: From Donor Cell to Residual-Distribution Schemes

In this paper I review three key topics in CFD that have kept researchers busy for half a century. First, the concept of upwind differencing, evident for 1-D linear advection. Second, its implementation for nonlinear systems in the form of high- resolution schemes, now regarded as classical. Third, its genuinely multidimensional implementation in the form of residual-distribution schemes, the most recent addition. This lecture focuses on historical developments; it is not intended as a technical review of methods, hence the lack of formulas and absence of figures.

[1]  Meng-Sing Liou,et al.  Ten Years in the Making: AUSM-Family , 2001 .

[2]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[3]  S. Spekreijse,et al.  Multigrid Solution of the Steady Euler Equations. , 1989 .

[4]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[5]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[6]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme I. The quest of monotonicity , 1973 .

[7]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[8]  L. Mesaros,et al.  Multi-dimensional fluctuation splitting schemes for the Euler equations on unstructured grids. , 1995 .

[9]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[10]  P. Wesseling,et al.  On the construction of accurate difference schemes for hyperbolic partial differential equations , 1971 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Bram Van Leer,et al.  On numerical dispersion by upwind differencing , 1986 .

[13]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[14]  R. H. Sanders,et al.  The possible relation of the 3-kiloparsec arm to explosions in the galactic nucleus , 1974 .

[15]  W. K. Anderson,et al.  Comparison of Finite Volume Flux Vector Splittings for the Euler Equations , 1985 .

[16]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[17]  J. Fromm A method for reducing dispersion in convective difference schemes , 1968 .

[18]  Philip L. Roe,et al.  Numerical solution of a 10-moment model for nonequilibrium gasdynamics , 1995 .

[19]  Philip L. Roe,et al.  Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics , 1986 .

[20]  Rolf Jeltsch,et al.  Accuracy barriers of two time level difference schemes for hyperbolic equations , 1987 .

[21]  David L. Book,et al.  Flux-corrected transport II: Generalizations of the method , 1975 .

[22]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[23]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[24]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[25]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[26]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[27]  Philip L. Roe,et al.  A comparison of numerical flux formulas for the Euler and Navier-Stokes equations , 1987 .

[28]  B. Koren Multigrid and defect correction for the steady Navier-Stokes equations , 1990 .

[29]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[30]  E. van der Weide Compressible flow simulation on unstructured grids using multi-dimensional upwind schemes , 1998 .

[31]  Bernard Grossman,et al.  A rotated upwind scheme for the Euler equations , 1991 .

[32]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[33]  Philip L. Roe,et al.  Grids and Solutions from Residual Minimisation , 2001 .

[34]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[35]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[36]  John Van Rosendale,et al.  Upwind and high-resolution schemes , 1997 .

[37]  Bram van Leer,et al.  Upwind-difference methods for aerodynamic problems governed by the Euler equations , 1985 .

[38]  Philip L. Roe,et al.  Compact high‐resolution algorithms for time‐dependent advection on unstructured grids , 2000 .

[39]  Bram van Leer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[40]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[41]  S. F. Davis,et al.  A rotationally biased upwind difference scheme for the euler equations , 1984 .

[42]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[43]  Kenneth G. Powell,et al.  AN APPROXIMATE RIEMANN SOLVER FOR MAGNETOHYDRODYNAMICS (That Works in More than One Dimension) , 1994 .

[44]  Rémi Abgrall,et al.  Design of an Essentially Nonoscillatory Reconstruction Procedure on Finite-Element-Type Meshes , 1991 .

[45]  H. Paillere,et al.  Multidimensional upwind residual distribution schemes for the Euler and Navier-Stokes equations on unstructured grids , 1995 .

[46]  Kun Xu,et al.  A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method , 2001 .

[47]  Philip L. Roe,et al.  A multidimensional flux function with applications to the Euler and Navier-Stokes equations , 1993 .

[48]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[49]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[50]  Bram van Leer,et al.  Use of a rotated Riemann solver for the two-dimensional Euler equations , 1993 .

[51]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .

[52]  Bram van Leer CFD education - Past, present, future , 1999 .

[53]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[54]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[55]  P. Lax,et al.  Decay of solutions of systems of nonlinear hyperbolic conservation laws , 1970 .

[56]  R. LeVeque Approximate Riemann Solvers , 1992 .

[57]  R. Courant,et al.  On the solution of nonlinear hyperbolic differential equations by finite differences , 1952 .

[58]  Barry Koren,et al.  Euler and Navier-Stokes solvers using multi-dimensional upwind schemes and multigrid acceleration : results of the BRITE/EURAM projects AERO-CT89-0003 and AER2-CT92-00040, 1989-1995 , 1997 .

[59]  Doru Caraeni Development of a Multidimensional Residual Distribution Solver for Large Eddy Simulation of Industrial Turbulent Flows. , 2000 .

[60]  H. Huynh Accurate upwind methods for the Euler equations , 1995 .

[61]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[62]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[63]  Mani Rad,et al.  A residual distribution approach to the Euler equations that preserves potential flow , 2001 .

[64]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[65]  J. Boris,et al.  Flux-corrected transport. III. Minimal-error FCT algorithms , 1976 .

[66]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[67]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .