Deformation behavior of Au/Ti multilayers under indentation

Au/Ti multilayers with individual layer thicknesses of 25 nm and 250 nm were deformed by indentation with a Vickers indenter. The deformation behavior changes from delamination-controlled for the multilayer with an individual layer thickness of 250 nm to shear banding for the multilayer with an individual layer thickness of 25 nm. The length-scale effect on delamination resistance is discussed and it is found that the delamination resistance of the Au/Ti interfaces increases with decreasing layer thickness.

[1]  M. Nastasi,et al.  Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers , 2003 .

[2]  M. Véron,et al.  Deformation mechanism in high strength Cu/Nb nanocomposites , 2001 .

[3]  Amit Misra,et al.  Mechanism for shear banding in nanolayered composites , 2010 .

[4]  Frans Spaepen,et al.  Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers , 2000 .

[5]  Guang-Ping Zhang,et al.  Two different types of shear-deformation behaviour in Au–Cu multilayers , 2009 .

[6]  Robert E. Reed-Hill,et al.  Physical Metallurgy Principles , 1972 .

[7]  Yun-Che Wang,et al.  Residual strain and texture in free-standing nanoscale Cu-Nb multilayers , 2007 .

[8]  Amit Misra,et al.  Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers , 2002 .

[9]  Anthony G. Evans,et al.  Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination , 1984 .

[10]  M. Véron,et al.  High-strength materials: in-situ investigations of dislocation behaviour in Cu-Nb multifilamentary nanostructured composites , 2002 .

[11]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[12]  Guang-Ping Zhang,et al.  Interface instability within shear bands in nanoscale Au/Cu multilayers , 2008 .

[13]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[14]  Frans Spaepen,et al.  Microstructure, indentation and work hardening of Cu/Ag multilayers , 2006 .

[15]  N. Moody,et al.  Quantitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W , 1999 .

[16]  E. Arzt Size effects in materials due to microstructural and dimensional constraints: a comparative review , 1998 .

[17]  I. M. Robertson,et al.  Modeling texture evolution during rolling of a Cu–Nb multilayered system , 2005 .

[18]  Yun-Che Wang,et al.  Fatigue properties of nanoscale Cu/Nb multilayers , 2006 .

[19]  A. Misra,et al.  Deformation Behavior of Nanostructured Metallic Multilayers , 2001 .

[20]  N. Moody,et al.  Quantitative adhesion measures of multilayer films: Part I. Indentation mechanics , 1999 .

[21]  R. Armstrong,et al.  Pile-up based hall-petch relation for nanoscale materials , 1993 .

[22]  Y. Liu,et al.  Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers , 2006 .

[23]  Guang-Ping Zhang,et al.  Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation , 2009 .

[24]  R. Hoagland,et al.  Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation , 2009 .

[25]  O. Kraft,et al.  Effect of length scale on fatigue life and damage formation in thin Cu films , 2008 .

[26]  P. Renault,et al.  Effects of size and geometry on the plasticity of high-strength copper/tantalum nanofilamentary conductors obtained by severe plastic deformation , 2006 .

[27]  Amit Misra,et al.  Plastic flow stability of metallic nanolaminate composites , 2007 .