G-symplecticity implies conjugate-symplecticity of the underlying one-step method

[1]  R. Abgrall,et al.  Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws , 2015 .

[2]  J. Butcher,et al.  The Control of Parasitism in G-symplectic Methods , 2014, SIAM J. Numer. Anal..

[3]  Ernst Hairer,et al.  Long-Term Stability of Multi-Value Methods for Ordinary Differential Equations , 2014, J. Sci. Comput..

[4]  Oliver Lundqvist Numerical Methods for Ordinary Differential Equations , 2013 .

[5]  John C. Butcher,et al.  The existence of symplectic general linear methods , 2009, Numerical Algorithms.

[6]  Ander Murua,et al.  An Algebraic Approach to Invariant Preserving Integators: The Case of Quadratic and Hamiltonian Invariants , 2006, Numerische Mathematik.

[7]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[8]  Yifa Tang,et al.  The symplecticity of multi-step methods , 1993 .

[9]  J. M. Sanz-Serna,et al.  Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods , 1992 .

[10]  E. Hairer,et al.  On conjugate symplecticity of B-series integrators , 2013 .

[11]  J. C. Butcher,et al.  Dealing with Parasitic Behaviour in G-Symplectic Integrators , 2013 .

[12]  Ernst Hairer,et al.  CONJUGATE-SYMPLECTICITY OF LINEAR MULTISTEP METHODS , 2008 .

[13]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[14]  Pierre Leone,et al.  Symplecticity and symmetry of general integration methods , 2000 .

[15]  Ernst Hairer,et al.  Order barriers for symplectic multi-value methods , 1998 .