MST construction in O(log log n) communication rounds

We consider a simple model for overlay networks, where all n processes are connected to all other processes, and each message contains at most O(log n) bits. For this model, we present a distributed algorithm that constructs a minimum-weight spanning tree in O(log log n) communication rounds, where in each round any process can send a message to each other process. This result is the first to break the ω(log n) parallel time complexity barrier with small message sizes.

[1]  Pierre A. Humblet,et al.  A Distributed Algorithm for Minimum-Weight Spanning Trees , 1983, TOPL.

[2]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[3]  Jerome H. Saltzer,et al.  End-to-end arguments in system design , 1984, TOCS.

[4]  Baruch Awerbuch,et al.  Complexity of network synchronization , 1985, JACM.

[5]  Baruch Awerbuch,et al.  New Connectivity and MSF Algorithms for Shuffle-Exchange Network and PRAM , 1987, IEEE Transactions on Computers.

[6]  Baruch Awerbuch,et al.  Optimal distributed algorithms for minimum weight spanning tree, counting, leader election, and related problems , 1987, STOC.

[7]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[8]  Shay Kutten,et al.  A sub-linear time distributed algorithm for minimum-weight spanning trees , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[9]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[10]  Richard Cole,et al.  Finding minimum spanning forests in logarithmic time and linear work using random sampling , 1996, SPAA '96.

[11]  A Sublinear Time Distributed Algorithm for Minimum-Weight Spanning Trees , 1998, SIAM J. Comput..

[12]  Micah Adler,et al.  Communication-optimal Parallel Minimum Spanning Tree Algorithms , 1998, SPAA 1998.

[13]  Ben H. H. Juurlink,et al.  Communication-optimal parallel minimum spanning tree algorithms (extended abstract) , 1998, SPAA '98.

[14]  David Peleg,et al.  A near-tight lower bound on the time complexity of distributed MST construction , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[15]  David Peleg,et al.  A Near-Tight Lower Bound on the Time Complexity of Distributed Minimum-Weight Spanning Tree Construction , 2000, SIAM J. Comput..

[16]  Kirk L. Johnson,et al.  Overcast: reliable multicasting with on overlay network , 2000, OSDI.

[17]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[18]  Boaz Patt-Shamir,et al.  Distributed MST for constant diameter graphs , 2001, PODC '01.