THE EXPONENTIAL DIOPHANTINE EQUATION AX2 + BY 2 = λkZ AND ITS APPLICATIONS
暂无分享,去创建一个
W. Shiu | Zhenfu Cao | C. Chu
[1] Pingzhi Yuan,et al. On the Diophantine equation ax2+by2=ckn , 2005 .
[2] Guillaume Hanrot,et al. Existence of Primitive Divisors of Lucas and Lehmer Numbers , 2001 .
[3] T. N. Shorey,et al. On the number of solutions of the generalized Ramanujan-Nagell equation , 2001 .
[4] M. Le. An upper bound for the number of solutions of the exponential diophantine equation $a^x + b^y = c^z$ , 1999 .
[5] N. Terai,et al. A NOTE ON THE DIOPHANTINE EQUATION AX + BY = CZ , 1997 .
[6] P. Voutier,et al. Primitive divisors of Lucas and Lehmer sequences , 1995 .
[7] J. H. E. Cohn,et al. The Diophantine equation x2+3 = yn , 1993, Glasgow Mathematical Journal.
[8] 曹珍富. THE EQUATION x~2+2~m=y~n AND HUGH EDGAR'S PROBLEM , 1986 .
[9] Loo Keng Hua,et al. Introduction to number theory , 1982 .
[10] M. Abouzaid. Les nombres de Lucas et Lehmer sans diviseur primitif , 2006 .
[11] P. Yuan. On the Diophantine equation ax 2 + by 2 = ck n , 2005 .
[12] AndreescuAndrica. An Introduction to Diophantine Equations , 2002 .
[13] N. Terai. Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations , 1999 .
[14] Maohua Le,et al. A note on the diophantine equation $x² + b^y = c^z$ , 1995 .
[15] 曹珍富. ON THE EQUATION ax~m-by~n=2 , 1990 .