Lasing and transport in a quantum-dot resonator circuit

We study a double quantum-dot system coherently coupled to an electromagnetic resonator. A current through the dot system can create a population inversion in the dot levels and, within a narrow resonance window, a lasing state in the resonator. The lasing state correlates with the transport properties. On one hand, this allows probing the lasing state via a current measurement. On the other hand, the resulting narrow current peak allows resolving small differences in the dot properties (e.g., a small difference in the Zeeman splittings of the two dots). For realistic situations relaxation processes have pronounced consequences. Remarkably, they may even enhance the resolution between different spin states by releasing a trapped population in the off-resonant spin channel.

[1]  C. Schönenberger,et al.  Cooper pair splitter realized in a two-quantum-dot Y-junction , 2009, Nature.

[2]  M. Bayer,et al.  Direct observation of correlations between individual photon emission events of a microcavity laser , 2009, Nature.

[3]  A. Shnirman,et al.  Few-qubit lasing in circuit QED , 2009, 0908.4227.

[4]  R. Barends,et al.  Quasiparticle relaxation in optically excited high-Q superconducting resonators. , 2008, Physical review letters.

[5]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[6]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[7]  M. S. Zubairy,et al.  Quantum optics: Quantum theory of the laser – density operator approach , 1997 .

[8]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[9]  A. Shnirman,et al.  Single-qubit lasing and cooling at the Rabi frequency. , 2007, Physical review letters.

[10]  Time-dependent resonant tunneling via two discrete states. , 1995, Physical review. B, Condensed matter.

[11]  J. Cole,et al.  Single-qubit lasing in the strong-coupling regime , 2010, 1008.2611.

[12]  G. Burkard,et al.  Ultra-long distance interaction between spin qubits , 2006, cond-mat/0603119.

[13]  D. Loss,et al.  Spin dynamics in InAs nanowire quantum dots coupled to a transmission line , 2007, 0708.2091.

[14]  T. Honda,et al.  Shell Filling and Spin Effects in a Few Electron Quantum Dot. , 1996, Physical review letters.

[15]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[16]  S. Manus,et al.  Radio frequency pulsed-gate charge spectroscopy on coupled quantum dots , 2010, 1006.5554.

[17]  T. Kontos,et al.  Spin quantum bit with ferromagnetic contacts for circuit QED. , 2010, Physical review letters.

[18]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[19]  Y. Blanter,et al.  Quantum dynamics of a driven three-level Josephson-atom maser , 2010, 1004.1630.

[20]  A. Gossard,et al.  Manipulation of a single charge in a double quantum dot. , 2004, Physical review letters.

[21]  H.-G. Meyer,et al.  Sisyphus cooling and amplification by a superconducting qubit , 2007, 0708.0665.

[22]  M. D. Lukin,et al.  Mesoscopic cavity quantum electrodynamics with quantum dots , 2004 .

[23]  D A Williams,et al.  Charge-qubit operation of an isolated double quantum dot. , 2005, Physical review letters.

[24]  A. Gossard,et al.  A Coherent Beam Splitter for Electronic Spin States , 2010, Science.

[25]  Nazarov,et al.  Resonant tunneling through two discrete energy states. , 1995, Physical review letters.

[26]  H. Cheong,et al.  Coherent manipulation of electronic States in a double quantum dot. , 2003, Physical review letters.

[27]  P. Bertet,et al.  Coherent dynamics of a flux qubit coupled to a harmonic oscillator , 2004, Nature.

[28]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[29]  R. Lathe Phd by thesis , 1988, Nature.

[30]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[31]  H. Carmichael Statistical Methods in Quantum Optics 1 , 1999 .

[32]  Toshiaki Hayashi,et al.  Correlated coherent oscillations in coupled semiconductor charge qubits. , 2009, Physical review letters.

[33]  U. Fano Description of States in Quantum Mechanics by Density Matrix and Operator Techniques , 1957 .

[34]  Yu. A. Pashkin,et al.  Single artificial-atom lasing , 2007, Nature.

[35]  E. Schöll,et al.  Theory of single quantum dot lasers: Pauli-blocking-enhanced anti-bunching , 2011 .

[36]  A. Shnirman,et al.  Phase diffusion and locking in single-qubit lasers , 2008, 0807.4607.

[37]  S. Tarucha,et al.  Microwave spectroscopy of a quantum-dot molecule , 1998, Nature.

[38]  S. Filipp,et al.  Measurements of the Correlation Function of a Microwave Frequency Single Photon Source , 2010, 1002.3738.

[39]  Canada,et al.  Schemes for the observation of photon correlation functions in circuit QED with linear detectors , 2010, 1004.3987.